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Abstract 
Novelty and diversity as relevant dimensions of retrieval quality are 
receiving increasing attention in the Information Retrieval and 
Recommender Systems fields. Both problems have nonetheless been 
approached under different views and formulations in Information Retrieval 
and Recommender Systems respectively, giving rise to different models, 
methodologies, and metrics, with little convergence between both fields. We 
find considerable room for research towards the formalization of 
diversification methods, evaluation methodologies, and metrics. 
Furthermore, we ask ourselves whether there should be some natural 
connection between the perspectives on diversity in Information Retrieval 
and Recommender Systems, given that recommendation is after all an 
information retrieval problem. 

In the present work we propose an Information Retrieval approach to the 
evaluation and enhacement of novelty and diversity in Recommender 
Systems. We draw models and solutions from text retrieval and apply them 
to recommendation tasks in such a way that the recent advances achieved in 
the former can be leveraged for the latter. 

We also propose a new formalization and unification of the way novelty and 
diversity are evaluated on Recommender Systems, considering rank and 
relevance as additional and meaningful aspects for the evaluation of 
recommendation lists. We propose a framework that includes and unifies the 
main state of the art metrics for novelty and diversity in Recommender 
Systems, generalizing and extending them with further properties and 
flexibility in configuration. 

Our contributions are tested with standard Recommender Systems 
collections, in order to validate our proposals and provide further insights. 
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1. Introduction 

1.1 Motivation 
Until recently, research in Information Retrieval (IR) and Recommender Systems (RS) 
has focused almost exclusively on achieving accuracy, i.e., retrieving the most 
individually relevant documents or items for the needs of a query or a user, respectively. 
However, novelty and diversity as relevant dimensions of retrieval quality are receiving 
increasing attention in both IR and RS. The problem has nonetheless been approached 
under different views and formulations in both fields, giving rise to different models, 
methodologies, and metrics, with little convergence between both fields. 

Recommender Systems can be seen as a particular case of personalized Information 
Retrieval where there is no explicit query, but just implicit information about the user’s 
interests. Recommendation tasks generally involve a large set of items –such as books, 
movies or songs– and a large set of users to which the system provides suggestions of 
items they may enjoy or benefit from. Recommender systems technologies have 
experienced a considerable development with significant impact and introduction in 
commercial applications. 

The primary objective of every RS is to satisfy the seller’s interests by satisfying 
the customer’s interests. The classical approach for this task has been to predict a score 
for an item the user has not judged or accessed, and then present these new items in 
decreasing order of score. Nevertheless, this mechanism alone is usually not enough to 
actually satisfy the user’s interests. For example, if a system recommends items based 
on their popularity, it is likely not doing a task the user could not have done by herself –
even if the user happens to like the items, the chances that she had already heard about 
them are high, whereby the recommendation is of very marginal –if any– use. As 
another case, a very accurate system could return a set of monothematic items matching 
the user known themes or interests. This approximation may also fail since, albeit 
accurately matching the user’s preferences, the whole set of recommended items may be 
perceived as one –consider the case of a music recommendation algorithm that only 
returns songs of the same artist. The key in these situations is that novelty and diversity 
should be also considered in the quality assessment of a RS, as accuracy alone gives a 
very partial account of the actual system’s utility. 

The problem of results diversity has been already addressed in IR, but from a 
different angle. The diversity dimension of search results is being researched in the IR 
field as a means to address the ambiguity and/or underspecification involved in user 
queries. Current approaches to enhance and evaluate the diversity of search results use 
concepts such as query intents and document similarity. Query intents can be seen as the 
different meanings or purposes an underspecified query can represent. Taxonomies and 
query logs have been used for discovering and describing these intents. The 
identification of query intents and interpretations is then used to discover categories or 
refinements which may suit a query. Maximizing the range of categories covered by 
returned documents is a means to cope with the initial ambiguity of a query.  

In RS the focus lies on broadening the offer of recommended items to present to the 
user (diversity), and promoting less widely known (so-called long-tail) items (novelty), 
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or items a specific target user is unfamiliar with (unexpectedness). There has been some 
research in this area as well, and a raising concern for the importance of novelty and 
diversity in the RS community. However, we find considerable room for research 
towards the formalization of diversification methods, evaluation methodologies, and 
metrics in RS, compared to the level of convergence and standardization that is being 
achieved in the IR community. Furthermore, we ask ourselves whether there should be 
some natural connection between the perspectives on diversity in IR and RS, given that 
recommendation is after all a retrieval problem.  

1.2 Problem definition 
1.2.1 The Recommendation Task 
We provide first a brief overview of the general task of a recommender system, and we 
introduce some notation that shall be used in the following sections. Given a user 𝑢 ∈ 𝒰 
and a set of items 𝑖 ∈ ℐ the task consists on retrieving items the user may like or benefit 
from. Although some personal information about the user could be used, in general the 
predictions are generated from the user profile (which we shall denote as 𝐮), i.e., those 
items the user has previously interacted with, showing some evidence of her interest for 
them. 

The interaction between a user and an item may consist of an explicit rating 𝑟(𝑢, 𝑖) 
(which may be binary –“liked” or “not liked”– or gradual, e.g. one to five stars), or just 
of item access frequencies 𝑓𝑢𝑖, in which the potential interest for the item is evidenced 
more implicitly. Most of the RS community has focused on the rating case, specifically 
in the task of rating prediction (Figure 1), which tries to learn a rating prediction 
function �̂�:𝒰 × ℐ → [1, … , 𝑟𝑚𝑎𝑥]. However, we will consider a more general case of a 
top-N recommendation, in which the goal of the recommender is to retrieve a list 
𝑅 ∈ ℐ𝑁 of useful items for each user. Traditionally the order of the presented items is 
given by their individual interest (relevance) predictions. This approach needs not be 
optimal, as we will show in the next section.  

 
Figure 1. The recommendation problem as a rating prediction task 

Based on how the information of the user profile is employed, recommender 
systems can be divided in three categories: 

• Content-based (CB): the recommender will retrieve items whose content is 
similar to those of the profile. 
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• Collaborative Filtering (CF): the recommender will retrieve items based on 
connections or similarities between user profiles. 

• Hybrid approaches, combining CB and CF. 
The CF approach is specially interesting in scenarios with a large user community with 
high interaction with items in the collection, and the content of the items is incomplete 
or hard to work with. Popular CF algorithms include nearest-neighbors, rating matrices 
factorization (Koren, Bell, & Volinksy, 2009) and probabilistic latent semantic analysis 
(Hofmann, 2004). A broad and informative survey on the topic can be found in 
(Adomavicius & Tuzhilin, 2005), which can be complemented with (Koren, Bell, & 
Volinksy, 2009) for matrix factorization. We provide in the next section a quick 
overview of the aforementioned methods. 

Additionally, we will also consider that items usually have some categorical 
information associated with them, to which we shall refer as features. Throughout this 
work we consider a homogeneous set of item features ℱ. In particular, for each item 𝑖 
we denote its subset of features as 𝐢. 

1.2.2 Overview of Some Collaborative Filtering Algorithms 
One of the most used solutions to the recommendation tasks is the family of nearest 
neighbors algorithms (kNN), which focuses on the similarity of ratings between users 
(user-based) or items (item-based) to predict ratings. In its simplest form, user-based 
approaches consist on predicting ratings for a user 𝑢 based on the combination of other 
users’ predictions weighted by their similarity with the target user: 

�̂�(𝑢, 𝑖) = 𝐶 � 𝑠𝑖𝑚(𝑢, 𝑣) 𝑟(𝑣, 𝑖)
𝑣∈𝒩𝑢

 

where 𝒩𝑢 is a fixed size neighborhood of most similar users with respect to 𝑢 and 
𝐶 = 1 ∑ |𝑠𝑖𝑚(𝑢, 𝑣)|𝑣∈𝒩𝑢⁄  is a normalization constant. The similarity component 
𝑠𝑖𝑚(𝑢, 𝑣) is usually computed with the cosine or the correlation between the ratings for 
common items between users 𝑢 and 𝑣. Item-based alternatives follow a very similar 
approach, exchanging the role of users and items in rating estimation. 

Matrix factorization (MF) (Koren, Bell, & Volinksy, 2009) approaches consider the 
rating data as part of an incomplete rating matrix and seek to minimize explicitly the 
mean squared error of rating predictions. Inspired by the SVD factorization of matrices, 
MF algorithms obtain –in its most basic approach– a decomposition of the rating data in 
two matrices 𝑃 ∈ ℝ|𝒰|,𝑘 and 𝑄 ∈ ℝ|ℐ|,𝑘 (each row corresponding to a user or item, 
respectively) such that 

𝑃,𝑄 = arg min
𝑃∈ℝ|𝒰|,𝑘,𝑄∈ℝ|ℐ|,𝑘

 � (𝑟(𝑢, 𝑖) − 𝑃𝑢 𝑄𝑖𝑡)2
𝑢,𝑖:𝑟(𝑢,𝑖)≠∅

  

where 𝑟(𝑢, 𝑖) ≠ ∅ denotes a known rating. Conceptually, both matrices capture the 
latent factors in a 𝑘-dimensional latent space –with 𝑘 ≪ |𝒰|, |ℐ|– that condenses the 
information about the known rating data and predicts unknown ratings: 

�̂�(𝑢, 𝑖) = 𝑃𝑢 𝑄𝑖𝑡 
Commonly gradient descent or alternating least squares techniques have been used to 
estimate the factorization. 
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An alternative way to extract latent characteristics from user-item interaction data is 
the probabilistic latent semantic analysis (pLSA) (Hofmann, 2004), which seeks to 
learn a model of latent random variables. For the case of binary implicit information, 
pLSA considers a set {𝑧} of hidden variables and learns a model 𝜃 = {𝑝(𝑧|𝑢),𝑝(𝑖|𝑧)} 
such that it can estimate the probability of an item 𝑖 being chosen from the user 𝑢: 

𝑝(𝑖|𝑢, 𝜃) =  �𝑝(𝑖|𝑧)𝑝(𝑧|𝑢)
𝑧

 

The model is learnt using an expectation-maximization algorithm that tries to maximize 
the log-likelihood of the known data: 

𝜃 = arg min
𝜃

� log𝑝(𝑖|𝑢,𝜃)
𝑢,𝑖

 

1.2.3 Novelty and Diversity in Recommendations 
When using a recommender system such as those of online stores (Amazon.com, 
Netflix, etc.) one might experience the problem depicted in Figure 2. Since the user 
profile is composed of a couple of Beatles’ albums, a recommendation engine focused 
solely on accuracy may provide a list composed mainly of other albums of the Beatles 
and a couple of other authors (Pink Floyd, Bob Dylan). Although it is highly probable 
that the user will also like the recommended albums, it is clear that the recommendation 
is not very useful in the sense of: 

• the lack of diversity, probably a smaller sample of albums from the Beatles 
would have been as useful to discover the work of the band and would have 
given space for other interesting music from other authors; and 

• the lack of novelty, since the Beatles are a massive word-wide known band for 
which a recommender system is not even required. 

 
Figure 2. A not so useful recommendation 
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This situation opens two immediate questions: ¿why is this happening? ¿how to 
solve it? Typically, recommender systems have been trained towards minimizing the 
prediction error, so aspects like redundancy and obviousness have not been generally 
considered. Another problem lies in the underspecification of the user profile. Since it 
only contains album of a single author, a pure CF approach is likely to find most of the 
connections to other users that will have more albums from the same author. Finally, 
even when the user had bought or browsed other authors’ albums, those of the Beatles 
are so popular that may be inevitably promoted by a standard recommendation 
algorithm. Ways to solve this problem are presented in the state of the art (section 2.3) 
and in our contributions (chapters 3 and 4). 

Apart from the decision of which items to present, an additional aspect to consider 
is the order those are presented. Even when a recommendation consists in a selection of 
the top-𝑁 items with highest-predicted relevance for the target user, the order in which 
these are presented influences the user perception. Consider the case of Figure 3. 
Although the top-9 recommended items in lists 𝑅1 and 𝑅2 are the same, the order is 
different. A user that only considers the first four results of each will find that 𝑅1 is 
more diverse than 𝑅2. 

 
Figure 3. Different recommendation lists with the same items 

Another situation to take into account is the case of a system with a high ratio of 
novel, different items that do not match at all the likes of the user. That would be the 
case of a random recommender. Although we have seen that a purely accuracy-based 
recommender may fail in providing a useful recommendation list, it is obvious that 
accuracy should be kept while enhancing other user-centric dimensions. Consider the 
hypothetical case depicted in Figure 4. For recommendation lists are compared in terms 
of accuracy and diversity. While list D is clearly better than B and C, the rest of the 
combinations are not easily comparable between them in an objective way, and would 
be dependent on how much each utility dimension (accuracy, diversity, novelty) is 
valued by the user. In this context, a single metric encompassing both accuracy and 
novelty or diversity should be useful for a more comprehensive and conclusive 
comparison of recommendation lists. 
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Figure 4. Accuracy-diversity plot for four different recommendations 

1.3 Research Goals 
The research goals of this work are twofold. First, we aim to identify and analyze the 
current proposals and trends in the area of interest and others closely related with it, 
specifically: 

• Novelty and Diversity in IR: we study the different definitions and situations 
where novel and diverse results are desired. Then we analyze specific 
approaches both to assess and generate novelty and diversity in search results. 

• Novelty and Diversity in RS: analogously to IR, we study the contexts and 
situations that motivate novel and diverse recommendations, analyzing 
individual contributions to the field, both for evaluation and for improvement. 

• IR Metric formalization schemes: we aim to study the latest advances in the 
formalization of metrics based on utility models derived from how the user 
examines and consumes items in a result list. 

Second, starting from the work done on novelty and diversity for IR and RS, our 
research seeks progress towards a unification of views, and the identification of 
essential elements and principles on which a theory of diversity could be built. 
Concretely, we seek to present two original contributions to the main field of study: 

• Adaptation of IR diversity models, algorithms and metrics to RS, by bridging 
the principles proposed in search diversity and the elements involved in a 
recommendation scenario. 

• Development of a framework for the definition of RS novelty an diversity 
metrics that unifies different perspectives and state of the art metrics, and 
supports configurations that take into account the ranking and relevance of 
recommended items, two aspects not considered by the recommendation 
diversity metrics reported in the literature. 

1.4 Publications 
The contributions of this work have had been reported in the following publications, 
presented in chronological order: 

• In (Castells, Vargas, & Wang, 2011) we report a preliminary work on the 
formalization of metrics for RS presented in chapter 4. 
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• In (Vargas, Castells, & Vallet, 2011) we explore the adaptation of diversity 
metrics, techniques, and principles from ad-hoc IR to the recommendation task. 
The contents of this paper are expanded in chapter 3. 

• We present in (Vargas & Castells, 2011) a formal framework for the definition 
of novelty and diversity metrics that unifies and generalizes several state of the 
art metrics, relating to the work presented in chapter 4. 

As part of the ongoing and future work described in section 5.3, we make a first 
approach to the problem of the suitability of intent spaces for IR and RS diversification 
in (Vargas, Castells, & Vallet, 2012).  

1.5 Document Structure 
The rest of the document continues as follows: 

• In chapter 2 a comprehensive study of the state of the art is presented. Three 
general areas have been identified: evaluation metrics for IR (section 2.1), 
novelty and diversity in IR (section 2.2) and novelty and diversity in RS (2.3). 

• Chapter 3 presents our contributions in adapting the state of the art of diversity 
in IR to RS. 

• Chapter 4 defines a framework for defining novelty and diversity metrics for RS 
that can consider rank and relevance. 

• Chapter 5 offers a summary of the work, stresses the presented contributions, 
discusses some possible corrections or improvements to the contributions and 
outlines the future work. 
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2. State of the Art 
In this section we present an extensive analysis of the state of the art to identify and 
analyze current trends in the study of algorithms and evaluation metrics for IR, novelty 
and diversity in IR and RS. Since the Recommender Systems field has part of its roots 
in the Information Retrieval field, we envision the investigation of the work on novelty 
and diversity in the latter area as an important initial step with potential for 
advancement in the former. 

There has been extensive work in the past decade of research in the IR field on how 
to assess results list quality from the user’s point of view, whether from a pure 
accuracy-based view or a novelty and diversity-based one. These advancements contrast 
with the development of models, algorithms and theories in RS, where researchers are 
still attached to simple error-based evaluation metrics, and there is incomplete 
consensus in the evaluation methodologies for basic recommendation properties such as 
ranking or relevance. We therefore find a useful reference in revising the evaluation 
procedures and metrics in IR. 

2.1 Evaluation Metrics for Information Retrieval 
Along with online evaluation with real users, current IR evaluation practice relies on 
standard test collections for offline experimentation, such as the TREC datasets 
(Voorhees & Karman, 2005), each of them consisting of a vast collection of documents, 
a set of topics (instances of information needs, containing a detailed description and a 
query that will be the input of the IR system) for the tested systems to search for and a 
collection of (binary or graded) relevance judgments of documents for each topic. The 
yearly TREC campaigns provide a rich variety of medium to large-scale test collections, 
including datasets for such specialized retrieval tasks as cross-language retrieval, blog 
retrieval, patent search or diversity search, among many others. These collections allow 
the IR community to have a common resource for comparison and reproducibility of 
algorithms and methods for text retrieval. 

Among the earliest and most traditionally employed metrics to evaluate IR systems’ 
outputs, precision and recall measure the ratio of returned relevant documents over the 
number of returned and relevant documents, respectively, considering binary relevance 
judgments. Since users usually stop browsing search results early in the ranking, it is 
usual to take a cutoff position in the result list for the computation of these metrics, 
below which further returned documents are not considered. Precision and recall at N 
are thus defined as: 

𝑃@𝑁 =
∑ 𝑟𝑒𝑙𝑘𝑁
𝑘=1

𝑁
 

𝑟𝑒𝑐𝑎𝑙𝑙@𝑁 =
∑ 𝑟𝑒𝑙𝑘𝑁
𝑘=1

𝑅
 

where 𝑟𝑒𝑙𝑘 denotes the binary relevance of document at position 𝑘 and 𝑅 the total 
number of relevant documents. 
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With time, additional metrics have been developed in the field to overcome the 
limitations of precision and recall, or complement their properties. Some of them, such 
as mean average precision (MAP), R-precision, F-measure or mean reciprocal rank 
(MRR) are derivations of the aforementioned metrics. Although these metrics have a 
very simple formulation and are quite simple for interpretation, they may still lack of 
some connection with how the result list evaluation is conducted by real users. For 
example, they cannot handle graded relevance values and do not take into account the 
fact that documents in low positions, though relevant, have an increasingly smaller 
probability of being examined by the user than those in higher positions. This led to the 
definition of metrics such as normalized discounted cumulative gain (nDCG) (Järvelin 
& Kekäläinen, 2002), which apply a rank discount to the cumulated relevance that a 
result list provides the user with. 

More recently, researchers realized that many of the metrics which had been used 
for decades can be connected to formal models describing how users interact with –and 
draw benefit from– search results. This has led to a unification and formalization of 
existing metrics, and to the definition of new ones, such as expected reciprocal rank 
(ERR, see Chapelle, Metzler, Zhang, & Grinspan, 2009), rank-biased precision (RBP, 
see Moffat & Zobel, 2008), and others (Clarke C. , Craswell, Soboroff, & Ashkan, 
2011). This strand of progress found a strong and bright connection with the research on 
so-called click models (Hu, Zhang, Chen, & Wang, 2011), leading to a fertile and 
innovative variety of metrics, theories, connections and insights. Such modern proposals 
for evaluation metrics for IR tend to focus on the perceived utility for the user, rather 
than absolute total relevance per se, where two approaches have been identified: 

1) The metric models the way the user makes use of the result list –which is 
commonly referred to as a user model, for short. 

2) The metric determines whether a certain objective has been fulfilled (e.g. 
the family of k-call metrics proposed in Chen & Karger, 2006). 

We pay close attention to this recent strand of work, as we shall follow a similar 
methodology in our development of novelty and diversity metrics for recommender 
systems. For this reason we provide a brief overview of the latest advances and basic 
principles in this area in the next two subsections. 

2.1.1 Metrics Based on User Models 

2.1.1.1 Summary 
Initially, let us define metrics based on user models that we will consider: 

• Average Precision (AP) is defined for binary relevance as: 

𝐴𝑃 =
1
𝑅
�𝑟𝑒𝑙𝑘

1
𝑘
�𝑟𝑒𝑙𝑗

𝑘

𝑗=1

𝑁

𝑘=1

 

• Discounted Cumulative Gain (DCG) for graded relevance is defined as: 

𝐷𝐶𝐺 = �
𝑟𝑒𝑙𝑘

log2 1 + 𝑘

𝑁

𝑘=1

 

though sometimes 𝑟𝑒𝑙𝑘 is replaced by 2𝑟𝑒𝑙𝑘 − 1 to emphasize the importance 
of highly relevant documents. DCG is often normalized by dividing by the 
ideal DCG, in this case it is generally referred as nDCG. 

• Rank-biased Precision (RBP) is defined as: 
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𝑅𝐵𝑃 = (1 − 𝑝)�𝑝𝑘−1 𝑟𝑒𝑙𝑘

𝑁

𝑘=1

 

• Expected Reciprocal Rank (ERR) is defined for graded relevance as: 

𝐸𝑅𝑅 = �
1
𝑘

 ��1 − 𝑝(𝑟𝑒𝑙|𝑖)� 𝑝(𝑟𝑒𝑙|𝑘)
𝑘−1

𝑖=1

𝑁

𝑘=1

 

where the probability of relevance of the document at position 𝑘 is defined as 

𝑝(𝑟𝑒𝑙|𝑖) =
2𝑟𝑒𝑙𝑖 − 1
2𝑟𝑒𝑙𝑚𝑎𝑥

 

2.1.1.2 Browsing models 
One of the first elements to model the use of a result list is the browsing model, i.e., 
how a user examines the documents in the list. Browsing models are tightly connected 
with statistical click models (see Craswell, Zoeter, Taylor, & Ramsey, 2008 and Hu, 
Zhang, Chen, & Wang, 2011), used by search engines to determine how to extract 
relevance information from click logs taking into account factors such as position, 
intent, etc., that can bias the perception of relevance. 

The most obvious bias in a result list is the position of documents. Browsing 
models that take into account the position in the ranking of documents are called 
position models. These models suppose that the position of a document in a result list 
determines critically the probability of the document being examined. Specifically, the 
examination hypothesis states the probability of a document being observed depends on 
its position in the ranking in a monotonically decreasing way: 

𝑝(𝑠𝑒𝑒𝑛|𝑘) ≥ 𝑝(𝑠𝑒𝑒𝑛|𝑘 + 1) 

where 𝑝(𝑠𝑒𝑒𝑛|𝑘) denotes the probability of the document at position 𝑘 being seen. This 
could be the case of DCG (Järvelin & Kekäläinen, 2002) and its normalized variant 
nDCG where there is a logarithmic-like discount 𝑝(𝑠𝑒𝑒𝑛|𝑘) = 1 log2(1 + 𝑘)⁄ . 

A refinement of the previous is the cascade hypothesis, which states that the user 
examines search results from the top downwards, in order and without skipping any 
document, until she stops browsing at some point. This can be expressed 
probabilistically as: 

𝑝(𝑠𝑒𝑒𝑛|𝑘) = 𝑝(𝑠𝑒𝑒𝑛|𝑘) 𝑝(𝑐𝑜𝑛𝑡|𝑘 − 1) 
where 𝑝(𝑐𝑜𝑛𝑡|𝑘) is the probability of continuing the examination after document at 
position 𝑘. Usually browsing models based on the cascade hypothesis also assume that 
the document in the first position is always examined (i.e. 𝑝(𝑠𝑒𝑒𝑛|1) = 1), so by 
recursion the formula can be expressed as: 

𝑝(𝑠𝑒𝑒𝑛|𝑘) = �𝑝(𝑐𝑜𝑛𝑡|𝑗)
𝑘−1

𝑗=1

 

The probability of continuing browsing after a certain position can be modeled in 
different ways. For example, rank-biased precision (RBP) models a user that keeps 
exploring the result lists but, after each step, reflects a constant impatience parameter 𝑝 
representing a constant probability to continue browsing (i.e. probability not to stop) at 
any position: 

𝑝(𝑐𝑜𝑛𝑡|𝑘) = 𝑝 ⇒ 𝑝(𝑠𝑒𝑒𝑛|𝑘) = 𝑝𝑘−1 



12  2. State of the Art 

 

Other models may take into account the relevance at each position to estimate the 
probability of continuing. In its most general way this can be decomposed as a 
marginalization with respect to relevance as follows: 

𝑝(𝑐𝑜𝑛𝑡|𝑘) = 𝑝(𝑐𝑜𝑛𝑡|𝑘, 𝑟𝑒𝑙) 𝑝(𝑟𝑒𝑙|𝑘) + 𝑝(𝑐𝑜𝑛𝑡|𝑘, ¬𝑟𝑒𝑙) �1 − 𝑝(𝑟𝑒𝑙|𝑘)� 

where the probability of relevance 𝑝(𝑟𝑒𝑙|𝑗) can be estimated from relevance judgments 
(e.g. simply 𝑝(𝑟𝑒𝑙|𝑗) = 𝑟𝑒𝑙𝑗 for binary judgments). 𝑝(𝑐𝑜𝑛𝑡|𝑘, 𝑟𝑒𝑙) and 𝑝(𝑐𝑜𝑛𝑡|𝑘, ¬𝑟𝑒𝑙) 
can be estimated in different ways using different assumptions. For example, RBP 
assumes 𝑐𝑜𝑛𝑡 is independent from 𝑘, that is, 𝑝(𝑐𝑜𝑛𝑡|𝑘) = 𝑝(𝑐𝑜𝑛𝑡) = 𝑝, as shown 
above. The expected reciprocal rank metric (ERR, see Chapelle, Metzler, Zhang, & 
Grinspan, 2009) assumes that once the user has found a relevant document the session 
stops (𝑝(𝑐𝑜𝑛𝑡|𝑘, 𝑟𝑒𝑙) = 0) and otherwise the user keeps going (𝑝(𝑐𝑜𝑛𝑡|𝑘, ¬𝑟𝑒𝑙) = 1), 
leading to: 

𝑝(𝑠𝑒𝑒𝑛|𝑘) = ��1 − 𝑝(𝑟𝑒𝑙|𝑗)�
𝑘−1

𝑗=1

 

2.1.1.3 Utility Accumulation Models 
Another aspect to determine in a user model is the utility accumulation model, which 
describes how a user accumulates utility from individual relevant documents. Carterette 
(SIGIR, 2011) proposes a framework that embraces a broad set of metrics and four 
families of utility accumulation models. The browsing model considered in this work 
considers, instead of the probability of a document being examined, the probability 
𝑝(𝑘|𝑠𝑡𝑜𝑝) of stopping the session at a certain rank 𝑘. 

The first described model is the expected utility model, in which the derived utility 
is the expected relevance at stopping rank: 

𝑀1 : �𝑟𝑒𝑙𝑘 𝑝(𝑘|𝑠𝑡𝑜𝑝)
𝑁

𝑘=1

 

Under this framework, RBP can be understood as the expected utility with stopping 
probability 𝑝(𝑘|𝑠𝑡𝑜𝑝) = 𝑝𝑘−1 (1− 𝑝). 

The second model is called expected total utility model. In this case, the derived 
utility is not only that of the document at stopping rank 𝑘, but the sum of relevance from 
documents between positions 1 and 𝑘: 

𝑀2:��𝑟𝑒𝑙𝑗

𝑘

𝑗=1

 𝑝(𝑘|𝑠𝑡𝑜𝑝)
𝑁

𝑘=1

 

The author finds that DCG can be described as an instantiation of this model, where 
𝑝(𝑘|𝑠𝑡𝑜𝑝) = 1 log2(1 + 𝑘)⁄ − 1 log2(2 + 𝑘)⁄ . 

A third family is that of the metrics based on expected effort. Instead of assessing 
the utility with accumulation relevance grades, it uses an effort function at a given rank 
𝑓(𝑘) to penalize the higher the stopping position, which in this case will be derived 
from the relevance of the documents from first to stopping position: 

𝑀3 : �𝑓(𝑘) 𝑝(𝑘|𝑠𝑡𝑜𝑝)
𝑁

𝑘=1

 



2.2. Novelty and Diversity in Information Retrieval 13 

 
 

An example of this family is ERR, where 𝑓(𝑘) = 1/𝑘 and 

𝑝(𝑘|𝑠𝑡𝑜𝑝) = 𝑝(𝑟𝑒𝑙|𝑘)��1 − 𝑝(𝑟𝑒𝑙|𝑘)�
𝑘−1

𝑗=1

 

Finally, the fourth family is the one of the expected average utility. This model 
considers the expected effort of further browsing after a relevant document is found: 

𝑀4 : �𝑟𝑒𝑙𝑘  �𝑓(𝑗) 𝑝(𝑗|𝑠𝑡𝑜𝑝)
𝑁

𝑗=𝑘

𝑁

𝑘=1

= �𝑓(𝑘) 𝑝(𝑘|𝑠𝑡𝑜𝑝) �𝑟𝑒𝑙𝑗

𝑘

𝑗=1

𝑁

𝑘=1

 

Under this view, average precision (AP, see Robertson, 2008) is an example of this 
family with 𝑓(𝑘) = 1/𝑘 and 𝑝(𝑘|𝑠𝑡𝑜𝑝) = 𝑟𝑒𝑙𝑘/𝑅 where 𝑅 is the total number of 
relevant documents in the collection. 

2.1.2 Objective-Based Metrics 
The other set of metrics of interest for our research do not aim to replicate how the user 
explores the results list, but focus instead on whether an objective has been 
accomplished. While these metrics may not have such a strict formal grounding as the 
ones analyzed in the previous subsection, they have the advantage to be quite clear to 
understand, and provide a means to define IR systems by optimizing their values. 

Chen & Karger (2006) broadly discuss the Probability Ranking Principle (PRP), 
and contend that it is not optimal for IR metrics besides precision or recall. The authors 
propose a generalization of the PRP towards an Expected Metric Principle (EMP) 
which aims for optimize directly the expected value of the metric of interest. The 
metrics introduced in the paper are the family of k-call metrics. The k-call metric family 
provides a binary value for a given ranked list of results of length 𝑛 for a query, 
returning 1 if at least 𝑘 ranked documents are relevant and 0 otherwise. In the case of 
𝑘 = 1 (1-call) the EMP seeks to optimize: 

𝑃(𝑟𝑒𝑙0 ∪ 𝑟𝑒𝑙1 ∪ …∪  𝑟𝑒𝑙𝑛−1 | 𝑑0,𝑑1, … ,𝑑𝑛−1) 

Since optimizing this probability would pose a NP-hard problem, it is convenient to 
apply here a greedy approach in which, for each step 𝑖 from 0 to 𝑛 − 1, one should 
choose 𝑑𝑖 so that 

𝑃(𝑟𝑒𝑙0 ∪ 𝑟𝑒𝑙1 ∪ …∪  𝑟𝑒𝑙𝑖 | 𝑑0,𝑑1, … ,𝑑𝑖) 

is maximized. One can see that maximizing this probability is equivalent to 
maximizing: 

𝑃(𝑟𝑒𝑙𝑖 | ¬𝑟𝑒𝑙0, ¬𝑟𝑒𝑙1, … , ¬𝑟𝑒𝑙𝑖−1,𝑑0, 𝑑1, … , 𝑑𝑖)  
That is, maximizing the relevance of the 𝑖-th document assuming that the previous 
results were irrelevant. An IR system optimized for the EMP should therefore be able to 
change its relevance model to adapt at each step the new assumptions of non relevance 
of previously retrieved documents. 

2.2 Novelty and Diversity in Information Retrieval 
As previously discussed, IR research and development has been traditionally focused on 
accuracy and relevance as targets for satisfying the user information need. However, 
there is an increasing concern for the need of something more than accuracy to 
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maximize the practical utility and the effective value of the retrieved information. In 
particular the concepts of diversity and novelty are being increasingly recognized as 
important ingredients of information value in many application domains. 

As defined in (Clarke, et al., 2008) diversity is a quality of result lists that helps 
cope with ambiguity or underspecification. Quite often a typical short textual query can 
represent more than one concept or interpretation (the case is clear, for example, with 
acronyms or polysemic words), in which case the query is called ambiguous. Consider 
the query “apple”, which could refer to the fruit, the computer industry corporation, a 
record label, and other less common interpretations. Users interested in one 
interpretation would not usually be interested in the others. Even when the query does 
identify a unique concept or entity, it may still be underspecified in the sense that it may 
have different aspects. Consider a query like “Mallorca”, which refers clearly to an 
island in the Mediterranean Sea, but still involves uncertainty about the actual specific 
user interest behind the query, which might relate to general information about the 
island, touristic deals, the football team, etc. In this case these aspects do not need to be 
mutually exclusive, that is, users may be interested in two or more of them. In this work 
we will refer to both interpretations and aspects as subtopics, since we shall deal with 
both in the same way –as generally do prior approaches in the state of the art literature. 
As a strategy to cope with ambiguity and underspecification, several authors have 
researched approaches that aim to cover as many subtopics as possible  (subtopic 
retrieval problem in Zhai, Cohen, & Lafferty, 2003), while still retaining sufficient 
relevance to satisfy the user need. 

Novelty, on the other side, is defined as the quality of a system that avoids 
redundancy. When an IR system presents the user two documents with the same or very 
similar content, it is obvious that one those documents adds little marginal utility with 
respect to the other. This effect is nonetheless not adequately captured by most standard 
IR metrics. A novel list should be aware of redundancy detection a promote documents 
that are different between them. 

Note that there is another notion of novelty in IR that deals with the so called 
sentence novelty, concerning how to summarize texts without the need to refer to the 
original source. Since this notion of novelty has no direct application in a general 
recommendation scenario, we shall leave it outside the scope of our present study. For 
more details, Sweeney, Crestani, & Losada (2008) provide a comprehensive study about 
the topic. 

Traditionally, IR research has been built upon the Probability Rank Prinpicle 
(PRP), which states that “if an IR’s system response to each query is a ranking of 
documents in order of decreasing probability of relevance, the overall effectiveness of 
the system will be maximized” (Robertson, 1977). While this principle has been of great 
utility in the research and development in IR systems for decades, it does not take into 
account diversity or novelty at all. This issue has been identified by many authors such 
as Chen & Karger (2006), Clarke, et al. (2008) or Zhai, Cohen & Lafferty (2003). 
Consider the case of diversity of the subtopic retrieval problem, in which the traditional 
assumption of independent relevance of documents with respect to a query does not 
hold. Here the quality of the retrieval system cannot be quantified as an aggregation of 
quality of each retrieved document, but as a quality of the whole set of retrieved 
documents. 

TREC has also acknowledged the issue and, since 2009, has started a diversity task 
in its so-called Web tracks (Clarke, Craswell, & Soboroff, 2009). In the TREC 2009 
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Web Track, each of the 50 different topics was structured into a representative set of 
subtopics (sets of possible interpretations or aspects) related to different user needs. 
Topics were categorized as ambiguous or faceted, depending on whether its subtopics 
are interpretations or aspects of the query. For examples of both topic types, see Figure 
5. Also, subtopics are classified as navigational or informational.  

 
Figure 5. Examples of ambiguous and faceted queries of TREC 2009 Web track 
topics. 

It is important to stress that in most situtations the subtopics are not known by the 
TREC competition participants –or by systems being tested in research experiments 
using the datasets– when retrieving documents, and they are only used for evaluating 
the systems’ output. This means that systems targetting diversity in their results must 
obtain the possible subtopics of a topic from their own sources or develop any other 

<topic number="19" type="ambiguous"> 
  <query>the current</query> 
  <description> 
    I’m looking for the homepage of The Current, a program on Minnesota 
Public Radio. 
  </description> 
  <subtopic number="1" type="nav"> 
    Take me to the homepage of The Current, a program on Minnesota Public 
Radio. 
  </subtopic> 
  <subtopic number="2" type="nav"> 
    I’m looking for the homepage of The Current newspaper in New Jersey. 
  </subtopic> 
  <subtopic number="3" type="nav"> 
    I want to find the homepage of The Current newspaper in Hartford. 
  </subtopic> 
  <subtopic number="4" type="nav"> 
    I want to find the homepage of The Current magazine in San Antonio. 
  </subtopic> 
</topic> 
 
<topic number="21" type="faceted"> 
  <query>volvo</query> 
  <description> 
    I’m looking for information on Volvo cars and trucks. 
  </description> 
  <subtopic number="1" type="nav"> 
    I’m looking for Volvo’s homepage. 
  </subtopic> 
  <subtopic number="2" type="inf"> 
    Find reviews of the Volvo XC90 SUV. 
  </subtopic> 
  <subtopic number="3" type="inf"> 
    Where can I find Volvo semi trucks for sale (new or used)? 
  </subtopic> 
  <subtopic number="4" type="inf"> 
    Find a Volvo dealer. 
  </subtopic> 
  <subtopic number="5" type="inf"> 
    Find an online source for Volvo parts. 
  </subtopic> 
</topic> 
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way to promote diversity. For example, Agrawal, Gollapudi, Halverson, & Ieong (2009)  
use the Open Directory Project (ODP) categories, Santos, Macdonald, & Ounis (WWW, 
2010) exploit query reformulations from commercial search engines (using their public 
APIs) to identify those subtopics and, in a very different approach, others such as Zhai, 
Cohen, & Lafferty (2003) use language models with KL-divergence or simple mixture 
models to calculate document similarity to increase the dissimilarity between 
documents of a result list, thus aiming to cover as many subtopics as possible. 

2.2.1 Diversity and Novelty Metrics 

2.2.1.1 Subtopic Retrieval Metrics 
Zhai, Cohen, & Lafferty (2003) present an initial study describing evaluation metrics, 
methods and experimental results concerning the subtopic retrieval problem. The first 
proposed metric is called subtopic recall (S-recall). This metric computes, for the first 𝐾 
results, the retrieved proportion the 𝑛 possible subtopics 

𝑆-𝑟𝑒𝑐𝑎𝑙𝑙@𝐾 =
�⋃ 𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐𝑠(𝑑𝑖)𝐾

𝑖=1 �
𝑛

 

where 𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐𝑠(𝑑𝑖) is the set of subtopics covered by document 𝑑𝑖. As S-recall may 
not be an easy-to-compare metric across topics (consider the fact that the number of 
subtopics and how they are covered by related documents is highly different depending 
on each topic), the authors provide another metric called subtopic precision (S-
precision) in order to account for the “intrinsic difficulty” of each topic. S-precision is 
defined for a given S-recall level 𝑟 as: 

𝑆-𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟 =
minRank�𝐿𝑜𝑝𝑡, 𝑟�

minRank(𝐿, 𝑟)  

where 𝐿 is the ranked list of retrieved documents, 𝐿𝑜𝑝𝑡 is an optimal system for 
minRank, and: 

minRank(𝐿, 𝑟) = min {𝐾 ∶  𝑆-𝑟𝑒𝑐𝑎𝑙𝑙@𝐾 ≥ 𝑟}  
These two metrics do not take into account that redundancy (retrieving many 

documents covering the same subtopic) may not be desirable. For this purpose, a cost 
function that sums the cost 𝑏 of presenting new documents and the cost 𝑎 of presenting 
single subtopics is proposed: 

𝑐𝑜𝑠𝑡(𝑑1, … ,𝑑𝐾) = 𝑎�|𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐𝑠(𝑑𝑖)| + 𝐾𝑏
𝐾

𝑖=1

 

Then, analogously to S-precision, a weighted subtopic precision (WS-precision) is 
defined: 

𝑊𝑆-𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟 =
minCost�𝐿𝑜𝑝𝑡, 𝑟�

minCost(𝐿, 𝑟)  

This metric generalizes S-precision in that the latter is WS-precision with 𝑏 = 1 and 
𝑎 = 0. 

In (Chen & Karger, 2006) S-recall is found to be a derivation of their k-call family 
of metrics. In fact, since S-recall is defined as the total relative amount of subtopics 
retrieved, it is equivalent to the average of 1-call metrics marginalized to each subtopic: 
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𝑆-𝑟𝑒𝑐𝑎𝑙𝑙@𝐾 =
�⋃ 𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐𝑠(𝑑𝑖)𝐾

𝑖=1 �
𝑛

=
1
𝑛

 �1-𝑐𝑎𝑙𝑙𝑠@𝐾
𝑠

 

2.2.1.2 Redundancy-Penalization Metrics 
Clarke, et al. (2008) stress the fact that most IR evaluation metrics, such as MAP or 
nDCG, assume that the relevance of each document can be judged in isolation, 
independently from other documents, thus ignoring important factors such as 
redundancy between documents and the uncertainty (incompleteness, ambiguity) in the 
query. The design of evaluation metrics should be consequently coherent with the actual 
user requirements. For this purpose, the authors present a framework for assessing 
diversity and novelty based on cumulative gain.  Under their point of view, the 
relevance 𝑅𝑘 of the 𝑘-th document for a user need 𝑢 should be considered in the light of 
documents ranked above k: 

𝑃(𝑅𝑘 | 𝑢,𝑑0, … ,𝑑𝑘−1) 
In Clarke’s approach, the information need and the documents are modeled in a 

space of information nuggets 𝒩 = {𝑛1, … ,𝑛𝑚} so that user needs 𝑢 ⊂ 𝒩 and 
documents 𝑑 ⊂ 𝒩 are represented as “bags of nuggets”. A nugget in this approach is an 
abstraction intended to stand for an indivisible unit of meaning, which can be 
materialized in different ways, always representing a binary property about documents. 
Assuming mutual independence of nuggets belonging to a document or a user need the 
probability of relevance can be estimated as: 

𝑃(𝑅𝑘 | 𝑢, 𝑑0, … . ,𝑑𝑘−1) = 1 −��1 − 𝑃(𝑛𝑖 ∈ 𝑢) 𝑃(𝑛𝑖 ∈ 𝑑𝑘)�𝑃�𝑛𝑖 ∉ 𝑑𝑗�
𝑘−1

𝑗=0

�
𝑚

𝑖=1

   

On one hand, to estimate 𝑃(𝑛𝑖 ∈ 𝑑), the authors assume that a human assessor (denoted 
by a binary function 𝐽:𝒟 × 𝒩 → {0,1}) always can determine negative judgements 
(𝐽(𝑑,𝑛𝑖) =  0) without error and positive ones (𝐽(𝑑,𝑛𝑖) =  1) with some probability 𝛼. 
On the other hand, estimating 𝑃(𝑛𝑖 ∈ 𝑢) would require knowledge of user probabilities, 
which is not always available. In such frequent cases, the authors propose the 
assumption of a fixed, independent probability 𝑃(𝑛𝑖 ∈ 𝑢) = 𝛾. Based on all this, the 
formula can be further simplified to: 

𝑃(𝑅𝑘 | 𝑢,𝑑0, … . , 𝑑𝑘−1) = 1 −��1 − γ α 𝐽(𝑑𝑘,𝑛𝑖)�(1 − 𝛼)
𝑘−1

𝑗=0

�
𝑚

𝑖=1

 

≈ 𝛾 𝛼 �𝐽(𝑑,𝑛𝑖) (1− 𝛼)𝑟𝑖,𝑘−1
𝑚

𝑖=1

 

where 𝑟𝑖,𝑘−1 =  ∑ 𝐽�𝑑𝑗 ,𝑛𝑖�𝑘−1
𝑗=0 . Since 𝛾 𝛼 is constant, it has no relative impact when 

comparing systems (as the metric is intended to), whereby the authors define a gain 
function for their nDCG-based metric as: 

𝐺(𝑘) =  �𝐽(𝑑,𝑛𝑖) (1 − 𝛼)𝑟𝑖,𝑘−1
𝑚

𝑖=1

 

The resulting metric is α-nDCG: 
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α-nDCG = 
1

𝛼-𝐼𝐷𝐶𝐺
 �

𝐺(𝑘)
log2(𝑘 + 2)

𝑛

𝑘=1

 

where α-IDCG is the ideal or maximum value of α-DCG, which for practical purposes 
is usually calculated approximately with a greedy approach. 

Clarke has continued studying possible unifications of α-nDCG and others. In 
(Clarke C. , Craswell, Soboroff, & Ashkan, 2011) a unified framework for novelty and 
diversity metrics is proposed. Diversity is accommodated through a linear combination 
of measures computed on individual subtopics (see the description of intent-aware 
metrics of the next subsection). Novelty is accommodated by penalizing redundancy. In 
fact, some of th already presented metrics can be explained under this framework. After 
conducting some experiments with the test collection of the TREC 2009 Web track, 
results indicate that these metrics work as intended. 

2.2.1.3 Intent-Aware Metrics 
Agrawal, Gollapudi, Halverson, & Ieong (2009) propose a generalization of standard IR 
metrics to acknowledge the possible intents of a query. Hence, given a metric M –such 
as nDCG, MRR, MAP, ERR–, its intent-aware version IA-M is defined as: 

𝐼𝐴-𝑀(𝑞) = �𝑝(𝑐|𝑞) 𝑀(𝑞|𝑐)
𝑐

 

Here, 𝑀(𝑞|𝑐) means a modification of M in which the documents that do not belong to 
category 𝑐 are considered not relevant, and those that belong to the category will keep 
their relevance score. For example, the intent-aware version of ERR is: 

𝐼𝐴-𝐸𝑅𝑅(𝑞) = �𝑝(𝑐|𝑞) �
1
𝑘

 �(1 − 𝑟𝑖𝑐) 𝑟𝑘𝑐
𝑘−1

𝑖=1

𝑁

𝑘=1𝑐

 

2.2.2 Diversification Methods 
In the last section, evaluation metrics have been introduced to measure the effectiveness 
of systems at the novelty and diversity task, but these measures have worst-case NP-
hard computation time (Carterette, Information Retrieval, 2011). The primary 
consequence of this is that there is no ranking principle akin to the PRP for document 
relevance that provides uniform instruction on how to rank documents for novelty and 
diversity. Therefore alternative approaches must be applied to optimize system towards 
novelty and diversity. In particular, greedy reranking techniques have been widely used. 
Here we review some of these techniques and other solutions. 

2.2.2.1 Maximal Marginal Relevance 
One of the first references on diversity in IR appears in (Carbonell & Goldstein, 1998), 
where a method for combining query relevance and the so called information novelty for 
text retrieval is presented. This kind of method is appropriate for scenarios where there 
is a considerable big set of relevant documents, in which information redundancy is 
often observed. 

Specifically, the Maximal Marginal Relevance (MMR) criterion establishes a trade-
off between the relevance of a document for a given query and the amount of new 
information this document provides with respect to previously retrieved documents. The 
proposed greedy algorithm selects, at each rank level, a document so that is 



2.2. Novelty and Diversity in Information Retrieval 19 

 
 

argmax
𝑑𝑖∈𝑅∖𝑆

�𝜆 rel(𝑑𝑖, 𝑞) − (1 − 𝜆) max
𝑑𝑗∈𝑆

sim�𝑑𝑖,𝑑𝑗�� 

where 𝜆 is a parameter taking values between 0 an 1, 𝑞 is the query for which 
documents are retrieved, 𝑑𝑖 and 𝑑𝑗 are documents from the document collection 𝑅, 𝑆 
represents the set of higher-ranked, retrieved documents and rel and sim are functions 
of document-query relevance and document-document similarity, respectively. 

Using the parameter 𝜆, one can tune the algorithm towards relevance or information 
novelty. In fact, relevance and information novelty are not always valued the same way 
for every scenario. While simple and intuitive, the idea of MRR of maintaining some 
value with respect to a query and being as different as possible to what has already been 
retrieved has been widely used in other publications in IR and RS. 

2.2.2.2 IA-Select 
In (Agrawal, Gollapudi, Halverson, & Ieong, 2009), the authors assume that there is a 
taxonomy of information whose topical level models the user intents, so documents and 
queries may belong to more than one category of the taxonomy. The authors also 
assume that usage statistics have been collected on the distribution of user intents over 
the categories. Using this knowledge, the authors develop an objective that tradeoffs 
relevance and diversity to minimize the risk of dissatisfaction for the average user. 

Specifically, knowing the categories of the taxonomy both queries and documents 
belong, the usage statistics provide a way of determining the probability of a category 
belonging to a document, i.e., 𝑝(𝑐|𝑞) and also the probability 𝑉(𝑑|𝑐, 𝑞) of a document 
satisfying the user intent represented by the category the query belongs to, they pose the 
DIVERSIFY(K) objective: 

DIVERSIFY(K) = argmax
𝑆⊂𝑅(𝑞):|𝑆|=𝑘

 𝑃(𝑆|𝑞) 

The probability 𝑃(𝑆|𝑞) will represent the probability that the set of documents 𝑆 
satisfies the average user by averaging, for each category 𝑐 representing a possible 
intent for the query 𝑞, the probability that some documents of 𝑆 satisfy the category 𝑐: 

𝑃(𝑆|𝑞) = �𝑝(𝑐|𝑞) �1 −��1 − 𝑉(𝑑|𝑞, 𝑐)�
𝑑∈𝑆

�
𝑐

  

Since DIVERSIFY(K) is NP-hard and its solutions is not necessarily unique, a more 
efficient solution for determining a good solution for the problem is used here. 
Particularly, the so-called IA-Select (intent-aware select) algorithm is a greedy 
algorithm that selects from a set of retrieved documents the document that maximizes: 

𝐼𝐴-𝑆𝑒𝑙𝑒𝑐𝑡(𝑑|𝑆, 𝑞) = �𝑝(𝑐|𝑞) 𝑉(𝑑|𝑞, 𝑐)��1 − 𝑉(𝑑′|𝑞, 𝑐)�
𝑑′∈𝑆𝑐

 

The set of documents 𝑆 contains the documents selected by IA-Select in the previous 
steps. Since 𝑃(𝑆|𝑞) is submodular, IA-Select has the nice property of finding a solution 
𝑆′ to that 𝑃(𝑆′|𝑞) ≥ �1 − 1 𝑒� �𝑃(𝑆∗|𝑞), where 𝑆∗ is one of the optimal solutions. 

2.2.2.3 Learning to Rank Approaches 
Recently in the IR field there has been a significant growth of the application of 
Machine Learning approaches, which has received the name of Learning to Rank. The 
problem in diversity in IR has also been approached from this point of view. The first 
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reference found is (Radlinski, Kleinberg, & Joachims, 2008), where two different 
algorithms, Ranked Explore and Commit and Ranked Bandits Algorithm, use data of 
user clicks to produce diverse rankings. Yue & Joachims (2008) also present an 
Learning to Rank approach for learning diverse subsets using structural SVMs. More 
recently, Slivkins, Radlinski, & Gollapudi (2010) present a scalable approach that takes 
into account document similarity and context whith appropiate theoretical foundations. 

2.2.2.4 Portfolio Theory 
Wang & Zhu (2009) studied the problem of ranking under uncertainty using Modern 
Portfolio Theory. While the classic PRP approaches deal with maximizing the 
effectiveness in ranked lists, it does not consider the implicit risk (measured as the 
variance of the overall effectiveness) that a given ranking may have. If the releance 𝑟 of 
each document is considered a random variable, the expected value and the risk 
(variance) of the overall relevance of a ranked list are given by: 

𝐸[𝑅𝑛] = �𝑤𝑖 𝐸[𝑟𝑖]
𝑛

𝑖=1

 

𝑉𝑎𝑟(𝑅𝑛) = ��𝑤𝑖 𝑤𝑗  𝜎𝑖 𝜎𝑗  𝜌𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

where 𝑤𝑖 is the weight associated at the 𝑖-th position in the ranking, 𝐸[𝑟𝑖] is its expected 
relevance, 𝜎𝑖 is the standard deviation of the relevance and 𝜌𝑖,𝑗 is the correlation 
coefficient between the relevances of documents at positions 𝑖 and 𝑗. The authors focus 
on maximizing the following objective function: 

𝑂𝑛 = 𝐸[𝑅𝑛] − 𝑏 𝑉𝑎𝑟(𝑅𝑛) 

For this purpose, a greedy approach is proposed so that, for each step 𝑘 ∈ {2, … ,𝑛} the 
following quantity is maximized: 

𝐸[𝑟𝑘] − 𝑏 𝑤𝑘 𝜎𝑘2 − 2𝑏�𝑤𝑖 𝜎𝑖 𝜎𝑘 𝜌𝑖,𝑘

𝑘−1

𝑖=1

 

In the paper, the authors show that this approach can improve the results for subtopic 
text retrieval of PRP and MMR approaches in terms of S-recall and other diversity 
metrics. 

2.2.2.5 xQuAD 
In (Santos, Macdonald, & Ounis, WWW, 2010) a novel algorithm for diversification is 
presented. The xQuAD (explicit query aspect diversification) algorithm makes use of 
query reformulation provided by commercial web search engines to derive new sub-
queries that will cover the possible aspects of the initial query. So, given an ambiguous 
query and a ranking of retrieved documents 𝑅, xQuAD will greedily select and inserting 
in a new ranking 𝑆 the document 𝑑 in 𝑅 ∖ 𝑆 maximizing the following mixture 
probability: 

(1 − 𝜆) 𝑃(𝑑|𝑞) + 𝜆 𝑃(𝑑, 𝑆̅|𝑞) 

where 𝑃(𝑑|𝑞) is the probability of the document 𝑑 being observed given the initial 
query q and 𝑃(𝑑, 𝑆̅|𝑞) the probability of observing the document but not the documents 
already in 𝑆. Using the subset {𝑞𝑖} of queries and some simplifying assumtions, one can 
expand 𝑃(𝑑, 𝑆̅|𝑞) so the objective formula for xQuAD becomes: 
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(1 − 𝜆) 𝑃(𝑑|𝑞) + 𝜆 ��𝑃(𝑞𝑖|𝑞) 𝑃(𝑑|𝑞𝑖) ��1 − 𝑃�𝑑𝑗�𝑞𝑖��
𝑑𝑗∈𝑆

�
𝑞𝑖

 

More recently, the same authors (CIKM, 2010) proposed a way to determine a way of 
selecting 𝜆 optimally for each query, adapting the specific need for diversification. 

2.2.2.6 Intent Hypothesis 
Hu, Zhang, Chen, & Wang (2011) found that current click models based on the 
examination hypothesis cannot fully explain user clicks by relevance and position bias. 
This examination hypothesis states that an document in a result list has been clicked if 
and only if it was examined and was relevant. They deduce that there is a intent bias 
derived from the relation between the user need (intent) and the submitted query in 
every search session, so the examination hypothesis needs to be redesigned to 
incorporate this intent bias. In particular, the intent hypothesis is based on three 
premises: 

• The user clicks a document if and only if it is examined and needed by the user. 
• If a document is irrelevant, the user will not need it. 
• If a document is relevant, whether it is needed is only influenced by the gap 

between the user’s intent and the query (intent bias). 

Previous state of the art click models can be easily modified to adjust to the new itent 
hypothesis. 

2.2.2.7 DivRank 
A diversity-aware alternative for PageRank called DivRank is presented in (Mei & Guo, 
2010). As PageRank, DivRank is based on a random walk over a network of linked 
documents with a teleportation component and supposes that connected documents tend 
to be more similar than others whose linkage is weaker. The particularity of DivRank is 
that the transition probabilities from document 𝑑𝑖 to 𝑑𝑗 are adjusted at each step of the 
random walk to be proportional to the number of times the document 𝑑𝑗 has been 
visited. This adjustment leads to a “rich gets richer” effect where nodes with a high 
probability absorb weaker neighbor nodes so when the iterations converge to a 
stationary state the documents with the highest probabilities. 

2.3 Novelty and Diversity in Recommender Systems 
2.3.1 Overview 
Similarly to IR, research in RS has been strongly focused on achieving accuracy in 
matching user interests,  either in terms of rating value prediction error (as measured by 
MAE or RMSE, see Adomavicius & Tuzhilin, 2005) or in terms of ranking quality (as 
measured by IR metrics). Nevertheless, evaluating recommender systems only this way 
may present serveral considerable limitations. In (Herlocker, Konstan, Terveen, & 
Riedl, 2004) it is stated that “there are properties different from accuracy that have a 
larger effect on user satisfaction and performance” such as coverage or non-
obviousness. In (McNee, Riedl, & Konstan, 2006) the authors propose a new-user 
centric direction for evaluating recommender systems based on three aspects: diversity, 
novelty and the user needs and expectations in a recommender. We analyze here the two 
first aspects. 
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Novelty and diversity are highly desirable features for automatic recommendation. 
In most scenarios, the purpose of recommendation is inherently linked to a notion of 
discovery, as recommendation makes most sense when it exposes the user to a relevant 
experience that she would not have found by herself –obvious, however accurate 
recommendations are generally of little use. Besides, user interest prediction involves 
inherent uncertainty, since it is based on implicit, incomplete evidence of interests, 
where the latter are moreover subject to change. Therefore, avoiding a too narrow array 
of choice is generally a good approach to enhance the chances that the user is pleased by 
at least some recommended item. Sales diversity may enhance businesses as well, 
leveraging revenues from market niches (Fleder & Hosanagar, 2009). 

Reported contributions in this area involve the definition of algorithms and strategies 
to enhance novelty and diversity, as well as methodologies and metrics to assess how well 
this is achieved. From the common understanding that novelty and diversity play a 
fundamental part as dimensions of recommendation utility, most authors have dealt with 
these properties as opposing goals to accuracy, stating the problem as a multi-objective 
optimization issue, where an optimal trade-off between accuracy and diversity is sought.  

Novelty and diversity are different though related notions. The novelty of a piece of 
information generally refers to how different it is with respect to “what has been 
previously seen or known”, by a specific user, or by a community as a whole. Some 
authors even make a distinction between novelty and serendipity (McNee, Riedl, & 
Konstan, 2006 and Herlocker, Konstan, Terveen, & Riedl, 2004). Serendipity is defined 
as the quality of novel items that would not have been able to be discovered without the 
help of the recommendation system. 

Novelty in recommendation is specially relevant to exploit the Long Tail effect, i.e., 
the situation where a few items are extremely popular and there is the rest of them are 
much less known (Figure 6). As estated by Anderson (2006), recommender systems 
may benefit from selling less of more, that is, recommending less wide-known items to 
more users instead of focusing on hihgly-popular items. 

Diversity generally applies to a set of items, and is related to how different the 
items are with respect to each other. This is related to novelty in that when a set is 
diverse, each item is “novel” with respect to the rest of the set. Moreover, a system that 
promotes novel results tends to generate diverse results for each user over time and also 
enhances the global “diversity of sales” from the system perspective. It is worth to make 
a distinction between individual diversity and aggregate diversity. The first case 
accounts for how different are items in a recommendation list for a only user, which is 
normally the notion of diversity employed in most works. Nevertheless, aggregate 
diversity –understood as the total amount of different items a recommendation 
algorithm can provide to the community of users– (Adomavicius & Kwon, to appear) is 
also a very interesting quality of a RS as a whole. 

 
Figure 6. The long tail effect 

Popularity
(e.g. nr users who
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Item
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2.3.2 Topic Diversification and Intra-list Similarity 
A common specific definition of diversity in the literature is the average pairwise 
dissimilarity between recommended items. Using this notion, Ziegler, McNee, Konstan, 
& Lausen (2005) introduce the topic diversification method to balance and diversify 
personalized recommendations list in order to reflect the user’s complete spectrum of 
interests. This article regards the recommendation lists as entities on their own, rather 
than pure aggregations of single items. 

For evaluation purposes, the authors measure the diversity of a recommendation list 
by a metric called intra-list similarity (ILS). Given a similarity function sim: ℐ ×  ℐ →
[−1, +1] the ILS for a recommendation list 𝑅 is defined as: 

𝐼𝐿𝑆(𝑅) =
1
2

 �� sim(𝑖, 𝑗)
𝑗∈𝑅𝑖∈𝑅

 

Note that ILS is permutation-invariant for the elements of 𝑅, that is, it is insensitive to 
the order of recommended items. This can be a considerable limitation as far as users do 
not necessarily browse down to the end of the list, whereby the order in which items are 
presented may heavily influence the pracitcal utility of the recommendation. We address 
this limitation as part of our research, as we report in chapter  

The topic diversification algorithm reranks a recommendation list 𝑅. It needs a set 
similarity metric sim∗: 𝒫(ℐ)  ×  𝒫(ℐ) → [−1, +1] that can be extracted using, e.g., a 
classification taxonomy of features of the items. Basically, the algorithm consists in 
choosing greedily the item 𝑖 that minimizes 

𝜆 𝑟𝑎𝑛𝑘𝑅(𝑖) + (1 − 𝜆) 𝑟𝑎𝑛𝑘sim∗(𝑆,{∙})(𝑖) 

where 𝑟𝑎𝑛𝑘𝑅 returns the position in the original list of the item 𝑖 and 𝑟𝑎𝑛𝑘sim∗(𝑆,{∙}) 
returns the position in the rank created by sorting the elements of 𝑅 ∖ 𝑆 by their 
similarity to the items in 𝑆 in decreasing order. The authors suggest that their algorithm 
ressembles the membrane’s selective permeability of molecular biology. This approach 
is also very similar to the Maximal Marginal Relevance scheme proposed in 
Information Retrieval (IR) for search diversification and automatic summarization 
(Carbonell & Goldstein, 1998). 

The authors conducted both offline and online experiments on a book exchanging 
community. The results in the offline experiment suggest that topic diversification may 
reduce the accuracy of recommendations in terms of precision an recall, but would 
reduce significantly the average ILS, thus incrementing the diversity of results. 

2.3.3 Diversity as a Quadratic Optimization Problem 
In (Zhang & Hurley, 2008) the problem of diversity is posed as a joint maximization 
problem of two objective functions reflecting preference similarity and item diversity 
with constraints. They bring intra-list diversity to a more formal formulation and problem 
statement, as follows. Let 𝐲 ∈ {0,1}|𝓘| be the vector indicating a top-N recommendation 
(where where 𝑦𝑘 is 1 in case document 𝑑𝑘 is selected and 0 otherwise, so 𝟏t 𝐲 = 𝑁), 
𝐷 ∈ ℝ|ℐ|,|ℐ| the matrix containing the distances between items and 𝐦𝑢 a vector 
indicating the relevance of each item for user 𝑢, then the diversity of a recommendation 
and its cumulative gain can be computed in terms of 𝐲: 

𝐼𝐿𝐷 = 𝐲𝑡𝐷𝐲  and  𝐶𝐺 = 𝑚𝑢
𝑡 𝐲 
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Consequently, the problem of diversification can be formally defined as finding 𝐲∗ such 
that 

𝐲∗ = arg max 
𝐲∈{0,1}|ℐ|

𝟏t 𝐲=𝑁

(1 − 𝜃) 𝛼 𝐲𝑡𝐷𝐲 + 𝜃 𝛽 𝑚𝑢
𝑡 𝐲 

where 𝜃 is a trade-off parameter between diversity and accuracy, and 𝛼 and 𝛽 are 
normalization parameters so both components lie in the interval [0,1]. To solve this 
complex problem, the authors propose to relax it into a real-valued problem. Then, the 
real-valued problem is solved by linear and quadratic programming algorithms which are 
much easier to solve that the discrete-valued case. Finally, they quantize the values of 
the real-valued solution to a candidate binary solution 𝐲∗. 

The authors introduce an interesting evaluation approach consisting of the biased 
selection of novel test items, whereby evaluating for novelty is achieved by studying the 
accuracy on such difficult items. 

2.3.4 Popularity, Long-tail Items and Recommendation Algorithms 
Zhou, Kuscsik, Liu, Medo, Wakeling, & Zhang (2010) propose some other ways to 
assess diversity and novelty. For assessing system-wide diversity, the personalization of 
a recommender system is the average over all pairs 𝑢, 𝑣 of users of the distance between 
their top-N recommendation lists 𝑅𝑢 and 𝑅𝑣 is defined as 

ℎ𝑢,𝑣 = 1 −
|𝑅𝑢 ∩ 𝑅𝑣|

𝑁
 

Averaged over all pairs of users, this metric ℎ should evaluate the capacity of the 
system to provide user-specific recommendations. 

As a measure of surprisal or novelty, they propose mean self-information (MSI), 
which computes the mean of the unexpectedness of each item 𝑖 ∈ 𝑅 relative to its global 
popularity: 

𝑀𝑆𝐼(𝑅) =
1

|𝑅|� log
|𝒰|

|{𝑢 ∈ 𝑈|𝑖 ∈ 𝐮}|
𝑖∈𝑅

 

The authors propose algorithms which target both metrics, by means of hybrid 
strategies combining collaborative filtering with graph spreading techniques. 

Celma & Herrera (2008) take an interesting alternative view on long-tail novelty. 
Rather than assessing novelty just in terms of the long-tail items that are directly 
recommended, they analyze the paths leading from recommendations to the long tail 
through similarity links. Specifically the analize collaborative filtering (CF) and 
content-based (CB) recommendations. For the case of CF recommendations, the 
topology of the item similarity network leads to poor discovery ratio. On the other hand, 
CB recommendations can provide more novel recommendations with lower perceived 
quality. Solutions suggested include promoting unknown artist of the long tail of the 
popularity distribution or selecting CF or CB depending on the users’s needs. 

2.3.5 Temporal Diversity 
Lathia, Hailes, Capra, & Amatriain (2010) deal with temporal diversity in CF 
recommender systems. In a realistic scenario, users interact with recommender systems 
iteratively over time, so new models must be trained regularly to adapt to new users, 
new items or updated user profiles. They carried out two experiments. An online 



2.3. Novelty and Diversity in Recommender Systems 25 

 
 

experiment showed that user’s perception of the recommendations lists degrades if the 
do not show diversity with respect to paste recommendations to the same user. The 
offline experiment compared the temporal diversity of some CF recommenders among 
time, reaching interesting conclusions: 

1) Item-based recommenders have on average more temporal diversity than matrix-
factorization ones. 

2) As users’ profiles increase, temporal diversity decreases. 
3) The more a user interacts (rates) with the system in a session, the more diverse 

the next recommendations will be. 
4) Even when a specific user does not interact with the system for a certain period 

of time, the interactions of other users will bring her more temporal diversity. 

One may draw from these observations the conclusion that improving temporal 
diversity is an important task. In the paper two methods are proposed: 

1) Switching between recommenders, so it is easier that the recommended items 
are not be the same for each list over time while mantaining some accuracy. The 
swiching period can be fixed or user-specific. 

2) Randomly reranking recommendation lists so a specific amount of top-N 
recommendations are replaced with others of lower predicted preference but 
more diverse with respect to previous recommendations. 

2.3.6 Aggregate Diversity 
Adomavicius & Kwon (to appear) address diversity as the ability of a system to 
recommend as many different items as possible over the whole population. This form of 
aggregate diversity is measured as the size of the set of all items a recommender system 
is able to recommend to its users as a whole: 

𝑎𝑔𝑔𝑟-𝑑𝑖𝑣 = ��𝑅𝑢
𝑢∈𝒰

� 

As a diversity-enhancing approach, They propose a parametric reranking method 
combining standard CF recommenders with other ranking criteria that promote 
aggregate diversity but have poor accuracy, so they compensate. If 𝑟𝑎𝑛𝑘𝐶𝐹(𝑖) =
1 �̂�(𝑢, 𝑖)⁄  denotes the function that defines the ranking 𝑅 in ascending order, and 
𝑟𝑎𝑛𝑘𝑋(𝑖) is one of the alternative aforementioned ranking criteria, then the proposed 
reranking is defined through a ranking threshold 𝜏 in the following manner: 

𝑟𝑎𝑛𝑘𝑋(𝑖; 𝜏) = � 𝑟𝑎𝑛𝑘𝑋(𝑖) if �̂�(𝑢, 𝑖) ≥ 𝜏
𝛼𝑢 + 𝑟𝑎𝑛𝑘𝐶𝐹(𝑢, 𝑖) if �̂�(𝑢, 𝑖) < 𝜏 

where 𝛼𝑢 = max
𝑖:�̂�(𝑢,𝑖)≥𝜏

𝑟𝑎𝑛𝑘𝑋(𝑖) 

With this reranking, all items with predicted rating above 𝜏 will be first included in 
the ranking sorted by the 𝑟𝑎𝑛𝑘𝑋 criterium, and those below the threshold will maintain 
their relative sorting, but will appear in lower positions than those of the first group. 
This way, by selecting 𝜏 appropiately it is possible to maintain part of the original 
accuracy while maximizing the aggregate diversity. As possible implementations of 
𝑟𝑎𝑛𝑘𝑋  the authors propose the following: 

• Inverse popularity: 𝑟𝑎𝑛𝑘𝐼𝑛𝑣𝐼𝑡𝑒𝑚𝑃𝑜𝑝(𝑖) = |{𝑢 ∈ 𝒰 | 𝑖 ∈ 𝐮}| 
• Reverse rating: 𝑟𝑎𝑛𝑘𝑅𝑒𝑣𝑅𝑎𝑡𝑖𝑛𝑔(𝑖) = �̂�(𝑢, 𝑖) 
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• Average rating: 𝑟𝑎𝑛𝑘𝐴𝑣𝑔𝑅𝑎𝑡𝑖𝑛𝑔(𝑖) = avg𝑢′:𝑖∈𝐮′ �̂�(𝑢′, 𝑖) 
• Item rating variance: 𝑟𝑎𝑛𝑘𝐼𝑡𝑒𝑚𝑉𝑎𝑟(𝑖) = 𝑉𝑎𝑟𝑢:𝑖∈𝐮��̂�(𝑢, 𝑖)� 

2.3.7 User Profile Partitioning 
Zhang & Hurley (2009) apply clustering techniques for recommending novel items. In 
standard situations, the recommendation is based on aggregate similarity metrics of 
items to the user profile, so the influence of novel items is lost in the aggregation. The 
authors propose to partition the user profile into clusters and compose a 
recommendation list of items that matches well with each cluster (Figure 7). 

The steps to produce a recommendation for a user 𝑢 are: 

1) Partition the items in the user profile 𝐮 into 𝑀 clusters {𝐶𝑘𝑢}𝑘=1𝑀  so the intra-
cluster distance is minimized. The clustering or partitioning strategies suggested 
are graph partitioning, k-means and modularity maximization.  

2) For each cluster, generate a recommendation taking it as a whole user profile. 
The proposed approach here was taking the ℎ = max(𝑁,𝑀) clusters with higher 
aggregate novelty and generate for those selected a top-𝑁𝑘 recommendation 
where 𝑁𝑘 = ⌊𝑁/ℎ⌋. 

3) Aggregate the recommendations for each cluster together to form a unique 
recommendation. 

Additionally, the authors carried out a dimension reduction strategy based on matrix 
factorization to help uncover similarities that are otherwise difficult to recognize in a 
higher-dimensional space. 

 
Figure 7. User profile partitioning 

2.3.8 Information Theoretical Metrics for Diversity and Novelty  
In (Bellogín, Cantador, & Castells, 2010) a study of heterogeneity in music 
recommendations is conducted. They propose their own metrics for assessing diversity, 
relative diversity and novelty based in Information Theory concepts such as entropy or 
mutual information. Given a user 𝑢, the diversity of a recommendation list 𝑅𝑢 with 
respect to a set ℛ𝑢 of recommendations defined as: 

𝑑𝑖𝑣(𝑅𝑢) = − � 𝑝𝑢,𝑖 log 𝑝𝑢,𝑖
𝑖∈𝑅𝑢

  where  𝑝𝑢,𝑖 =
|{𝑅𝑢′ ∈ ℛ𝑢|𝑖 ∈ 𝑅𝑢′ }|

|ℛ𝑢|
 

Relative diversity deals with differences between two recommendations and is 
defined as 

𝑑𝑖𝑣(𝑅𝑢, 𝑆𝑢) = � 𝑝𝑅𝑢,𝑖 log
𝑝𝑅𝑢,𝑖

𝑝𝑆𝑢,𝑖𝑖∈𝑅𝑢∩𝑆𝑢

  where  𝑝𝑅𝑢,𝑖 =
[𝑖 ∈ 𝑅𝑢]

|𝑅𝑢|  

Finally, they define novelty as 

User profile User subprofiles
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𝑛𝑜𝑣(𝑅𝑢) = −� 𝑝𝑖 log 𝑝𝑖
𝑖∈𝑅𝑢

  where  𝑝𝑖 =
|{𝑢′ ∈ 𝒰|𝑖 ∈ 𝑅𝑢′}|

|𝒰|  
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3. Information Retrieval Diversity 
for Recommender Systems 

In this chapter we explore the adaptation of diversity metrics, techniques, and principles 
from ad-hoc IR to the recommendation task. Particularly, we introduce the concept of 
aspect space as a mean to translate two key notions of IR diversity, document similarity 
and query intents, to their correspondences to the RS field: item similarity and user 
profile aspects, respectivelty. We propose ways of modeling aspect spaces using 
explicit and implicit information available from collected data, being the implicit case 
especially interesting in cases where the available information is limited to collaborative 
filtering data. Empirical results support the proposed approaches and provide further 
insights. 

The contents of this chapter have been published in (Vargas, Castells, & Vallet, 
SIGIR, 2011). 

3.1 Introduction 
In general terms, and most particularly in common practical scenarios, recommendation 
can be seen as an IR task. Interestingly, the diversity issue has been stated and 
addressed quite differently in the research on the topic so far in RS and ad-hoc IR 
respectively. In particular, diversity has been studied under a quite specific motivation 
and precise problem definition(s) in the IR community –building around the problem of 
uncertainty in user queries– along with formally grounded and well understood diversity 
metrics, with a theoretical depth and a drive towards standardization (backed by a 
specific TREC diversity task) which are not presently found or equally emphasized in 
the RS literature on the topic. It seems therefore natural to wonder whether, as far as it 
were possible to draw models and principles from one area to the other, research on RS 
diversity might benefit from the insights and ongoing progress in search diversity –and 
vice-versa. 

In this chapter we explore the adaptation of diversity models, metrics, and methods 
from ad-hoc IR into a RS setting. Specifically, we propose the notions of item similarity 
and user profile aspects as analogues of document similarity and query intents, 
respectively, upon which we adapt IR diversity techniques and methodologies to a 
recommendation task. We consider two scenarios that differ in the available information 
for the construction of a item similarity function and a user aspect space used by our 
RS-adapted diversification methods and diversity metrics. In one scenario, we propose 
an approach for the extraction of item features and user aspects based on latent factors 
when the only available information relates to the interaction between users and items. 

3.2 Recommendation Diversity vs. Search Diversity 
Diversity in RS is generally motivated as a means to reduce redundancy under the 
assumption that recommending too similar items is less profitable for the user –and the 
vendor– than offering a more varied experience. The rationale for diversity is often 
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stated in association with the notion of novelty and surprisal, upon the understanding 
that recommendation value is to a significant extent related to discovery in the user 
experience. Looking back for a connection to diversity in ad-hoc IR, one finds that the 
issues of ambiguity and underspecification are generally absent from the problem 
statement in the RS literature. This may seem natural as far as there is no query in the 
recommendation task to begin with. However, there is certainly a user information need, 
expressed in the form of a user profile (ratings or item access records). This implicit 
information need expression arguably involves far more ambiguity and incompleteness 
than an explicit user query, whereby the uncertainty-oriented motivation would 
certainly hold for RS diversity. So does the principle of diversification as a means to 
minimize the risk of underperformance extremes, which is also common in the IR 
literature (Agrawal, Gollapudi, Halverson, & Ieong, 2009). 

Query ambiguity and underspecification are modeled in terms of query 
interpretations, categories, aspects, nuggets, subtopics, and similar elements in ad-hoc 
IR. An analogy can be drawn in the RS setting by considering an equivalent notion of 
user profile aspect. This is in fact a natural idea, since a single user’s interests have 
many different sides and subareas (e.g. professional, politics, movies, travel, etc.). 
Different user preference aspects can be relevant or totally irrelevant at different times 
therefore, similar to query intent, there is uncertainty at recommendation time about 
what area of user interest should play in the given context. 

If one is able to give a consistent approximation to item similarity and user profile 
aspects in the context of a RS, the theories and metrics in search diversity could be 
adapted to the recommendation task. This would bring benefits such as 

a) a new perspective and rationale for diversity in RS in terms of theory and 
models, and  

b) new diversity metrics for RS, such as the intent-aware metrics (Agrawal, 
Gollapudi, Halverson, & Ieong, 2009) or α-nDCG (Clarke, et al., 2008). 

Additionally, such metrics would bring in several important properties currently lacking 
in RS diversity studies: 

a) the introduction of metrics that take into account the order of items when 
measuring the overall recommendation diversity (i.e. top positions are more 
important); 

b) the consideration of diversity only in the presence of relevance;  
c) related to this, the assessment of accuracy and diversity altogether by a single 

metric; and  
d) a step towards a shared consensus on common metrics and methodologies. 

3.3 The Concept of Aspect Space 
We consider a set of aspects 𝑎 ∈ 𝒜 which model, for all users, their different and 
disjoint interests derived from their profiles. The idea behind these aspects could be 
expressed as  the more aspects of the user profile are covered, the more diverse the 
recommendation will be perceived by the user. As these interests are not always equally 
representative of the user profile, we find it convenient to represent the user profile 
aspect space as a probability distribution of the aspects for the user profile, that will be 
denoted as 𝑝(𝑎|𝑢). Further, we will suppose that we have full information about each 
aspect space (meaning ∑ 𝑝(𝑎|𝑢)𝑎 = 1). 
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Following the analogy of query intents, it is necessary a way to determine the 
extent the user aspects are covered by the items of the collection. Same as before, we 
will consider for each item an aspect space defined by a probability distribution for the 
aspects denoted as 𝑝(𝑎|𝑖) with full information (∑ 𝑝(𝑎|𝑖)𝑎 = 1). Given these item 
aspect spaces, it is also possible to define a similarity metric between items: 

sim: ℐ × ℐ → [0,1] 
Finally, we will say that a certain aspect belongs to the user profile aspect of 𝑢 or 

the item aspect space of 𝑖 if 𝑝(𝑎|𝑢) ≠ 0 or 𝑝(𝑎|𝑖) ≠ 0, respectively. 
Before showing how we create an aspect space, let us see first their application for 

adapting diversification algorithms and diversity metrics. 

3.4 Adapted Aspect-Based Diversification Algorithms 
Given that the diversity problem is generally stated as a NP-hard problem (Carterette, 
Information Retrieval, 2011), it is common to solve it applying a greedy algorithm 
where a baseline ranking 𝑅 is diversified into a re-ranked list 𝑆 by iteratively picking 
the item 𝑖 ∈ 𝑅 ∖ 𝑆 which maximizes an objective function. Specifically, we adapt here 
two well-known algorithms from search diversity: IA-Select (Agrawal, Gollapudi, 
Halverson, & Ieong, 2009) and MMR (Carbonell & Goldstein, 1998). 

In the IA-Select scheme, the objective function is defined as: 

�𝑝(𝑐|𝑞) 𝑉(𝑑|𝑞, 𝑐)��1 − 𝑉(𝑑′|𝑞, 𝑐)�
𝑑′∈𝑆𝑐

 

In our RS context, we translate the taxonomy of categories 𝑐 to a set of aspects 𝑎 ∈ 𝒜 
modeling the user profile aspects and items aspects. In our adaptation of the objective 
function, we consider that 𝑉(𝑖|𝑢,𝑎) = �̂�(𝑢, 𝑖)𝑝(𝑎|𝑖). Finally, the objetive function for 
IA-Select in RS is defined as: 

� 𝑝(𝑎|𝑢)�̂�norm(𝑢, 𝑖)𝑝(𝑎|𝑖)��1 − 𝑝(𝑎|𝑗)�̂�norm(𝑢, 𝑗)�
𝑗∈𝑆𝑎∈𝒜

 

In MMR for search diversity the objective function to maximize has the following 
formulation: 

𝜆 rel(𝑑𝑖, 𝑞) − (1 − 𝜆) max
𝑑𝑗∈𝑆

sim�𝑑𝑖 ,𝑑𝑗� 

in our RS context we adapt it in a straightforward way by translating the concept of 
document simmilarity to item similarity: 

𝜆 �̂�𝑛𝑜𝑟𝑚(𝑖,𝑢) − (1 − 𝜆) max
𝑗∈𝑆

sim(𝑖, 𝑗) 

Note that this approach is very similar to that of Ziegler, McNee, Konstan, & Lausen 
(2005), but in this case we do not proceed with a rank normalization of components. 

3.5 Adapted Diversity Metrics 
To evaluate the quality of diversified recommendations we adapt measures such as the 
intent-aware metrics (Agrawal, Gollapudi, Halverson, & Ieong, 2009) and α-nDCG 
(Clarke, et al., 2008), where aspects play the role of categories (or subtopics), and user 
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profiles play the part of queries. That is, for instance, given a user 𝑢, the intent-aware 
nDCG of the recommendation to 𝑢 is defined as 

𝐼𝐴-𝑛𝐷𝐶𝐺 = � 𝑝(𝑎|𝑢) 𝑛𝐷𝐶𝐺(𝑢|𝑎)
𝑎∈𝒜

 

where, as defined in (Agrawal, Gollapudi, Halverson, & Ieong, 2009), 𝑛𝐷𝐶𝐺(𝑢|𝑎) 
counts as relevant items only the ones that are relevant for 𝑢 and have the aspect 𝑎. For 
the case of α-nDCG the adaptation results in the following modification of the gain 
function: 

𝐺(𝑘) = �𝑟(𝑖𝑘,𝑢)(1 − 𝛼)𝑐𝑎,𝑘−1

𝑎

 where 𝑐𝑎,𝑘−1 =  ��̂�(𝑖𝑙,𝑢;𝑎)
𝑘−1

𝑙=0

 

where 𝑟(𝑖, 𝑢; 𝑎) is the user 𝑢 preference for 𝑖 in case the item has the aspect 𝑎, and 0 
otherwise. 

3.6 Aspect Space Extraction 
In an ideal situation, we would have both user profile and item-specific information for 
modeling directly their associated aspect spaces. However, in many recommendation 
scenarios the information associated with the user profile is limited to a rating or access 
information of items in the collection, and item feature information may not be 
available, or may be incomplete.. Therefore it is necessary to create an aspect space 
from the available information, and we consider two different scenarios: 

a) There is available information about item features (or attributes), such as genre, 
author, language, etc. This means that user profile aspects can be derived from 
the item features and the specific relation between the user and the items. We 
define this scenario as an explicit aspect space. 

b) There is no information at all about the characteristics of the items. Therefore 
the user profile aspects can be solely modeled upon the relation between the 
users and documents. We define this scenario as an implicit aspect space. 

3.6.1 Explicit Aspect Space Extraction 
Let us consider the first scenario, in which there is an item feature space ℱ so each item 
𝑖 has a set 𝐢 ∈ ℱ of features. We shall assume that we have no a-priori information 
about how much each feature is representative of the item. In that case, we take the set 
of features ℱ as our aspect set 𝒜 and, for each feature 𝑓, the distribution probabilities 
for each item space will be defined as 

𝑝(𝑓|𝑖) =
[𝑓 ∈ 𝐢]

|𝐢|
 

For the distribution of user profile aspect spaces, we use the intuition that, the more 
items in the user profile contain a given feature, the more characteristic the feature is of 
the user interests: 

𝑝(𝑓|𝑢) =  
|{𝑖 ∈ 𝐮|𝑓 ∈ 𝐢}|

∑  |{𝑖 ∈ 𝐮|𝑓′ ∈ 𝐢}|𝑓′∈
 

Figure 8 illustrates the approach. 
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Figure 8. Explicit user profile aspects 

Given this discrete aspect space, a similarity function between items can be defined 
using the cosine similarity for sets: 

sim(𝑖, 𝑗) =
∑ [𝑓 ∈ 𝐢][𝑓 ∈ 𝐣]𝑓

�|𝐢||𝐣|
 

3.6.2 Implicit Aspect Space Extraction 
This is a more challenging scenario, which is especially interesting for situations of pure 
collaborative filtering data, or situations where the content information about the items 
in the collection is missing or incomplete. Here, we need a way to extract implicit 
information about user interests derived from the interactions of users and items of our 
system. Drawing from principles of matrix factorization (Koren, Bell, & Volinksy, 
2009), we use latent factor models as a way to create an aspect space for user profiles 
and items. In its most basic configuration, a matrix factorization technique considers a 
ℝ𝑘 factor space in which user profiles and items are represented by vectors 𝑝𝑢 and 𝑞𝑖, 
respectively, so that the predicted preference values are determined by the inner product 
of the vectors: 

�̂�(𝑢, 𝑖) = 𝑞𝑖𝑡  𝑝𝑢 

As suggested by the mentioned authors, the dimensions of the factor space can be 
interpreted as measures of the interests of the user. In our method, we identify these 
dimensions as the aspects of our probability space. Following the idea of the inner 
product for estimating preferences, it is natural to derive a similarity metric for items 
using the cosine between item factor vectors: 

sim(𝑖, 𝑗) =
𝑞𝑖𝑡 𝑞𝑗

�‖𝑞𝑖‖‖𝑞𝑗‖
 

For the estimation of the probability distribution for user profile and item aspect 
spaces, we carry out a binarization of the item feature vectors (given a 𝑞𝑖 ∈ ℝ𝑘 vector 
and a constant 𝑙 < 𝑘, we take the 𝑙 dominant factors as the dimensions of the aspect 
space) to convert them into pseudo-explicit aspects. With this binarization process, the 
probability distributions can be used in the same way as for the explicit case. An 
illustration of this approach is shown is Figure 9. 
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Figure 9. Implicit user profile aspects 

3.7 Experiments 
We have tested the behavior of the proposed approach on the MovieLens 100K dataset. 
We take as baselines two state of the art collaborative filtering algorithms: a common 
user-based nearest-neighbor (kNN) recommender, and a matrix factorization (MF) 
based algorithm (Koren, Bell, & Volinksy, 2009). We take the 80% training, 20% test 
data splits provided by the MovieLens distribution, with 5-fold cross-validation. For 
relevant judgments, we take as relevant (for each user) the items with a rating higher 
than 3 in the test set. 

The adapted diversifiers (MMR and IA-Select) are used to re-rank the top 500 
items returned by the baseline recommenders for each user. As aspect spaces, we test 
the two scenarios mentioned in section 3.6, one in which the diversifier uses the known 
item genre data, and one in which it extracts latent factors as the aspect space in the 
diversification algorithm, using rating information only. 

Table 1 shows the performance of the different configurations using our adapted IR 
metrics, plus intra-list diversity (ILD) –based on the complement of item similarity in 
our aspect space on genres–, a common metric used in RS diversity (Ziegler, McNee, 
Konstan, & Lausen, 2005). Note that, for evaluation purposes, we have not considered 
the implicit aspect space since it is not as objective as the explicit aspects. It can be seen 
that the proposed diversification methods work properly, consistently improving the 
non-diversified baselines (bottom row). The IA-Select approach performs overall 
significantly better than the MMR scheme on the three IR metrics. We believe this is 
because it builds upon a common formalization of diversity as do the metrics (after 
Agrawal, Gollapudi, Halverson, & Ieong, 2009). Somewhat surprisingly, diversification 
with latent features performs better than with explicit ones for IA-Select on kNN, and 
MMR on both. We attribute this to the fact that latent features provide a more dense 
representation of items, and also more significant in terms of explaining the differences 
in interests between users, and the similarity between items. On the ILD metric, MMR 
and IA-Select perform similarly, and explicit features work clearly better than latent. 
This is probably because ILD ignores relevance –with respect to which IA-Select and 
latent features seem to do better. 
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  α-nDCG@50 ERR-IA@50 nDCG-IA@50 ILD@50 
  kNN MF kNN MF kNN MF kNN MF 

IA-
Select 

E 0.1589 0.1838 0.0409 0.0516 0.0604 0.0755 0.8659 0.8734 
L 0.1596 0.1597 0.0465 0.0458 0.0618 0.0637 0.7951 0.7817 

MMR E 0.1334 0.1652 0.0367 0.0431 0.0461 0.0555 0.8601 0.8761 
L 0.1320 0.1742 0.0373 0.0528 0.0492 0.0705 0.7906 0.7740 

Baseline RS 0.1213 0.1451 0.0352 0.0425 0.0440 0.0561 0.7787 0.7655 

Table 1. Four diversity metrics (𝜶 = 0.5 in 𝜶-nDCG) on different diversification 
approaches: MMR (with 𝝀=0.5) and IA-Select, combined with explicit (E) and 
latent (L) features, on two baseline RS, based on kNN and MF respectively. The 
best value of each column is in bold. All differences to baseline are statistically 
significant (𝒑 < 𝟎.𝟎𝟎𝟓, Wilcoxon), except values in italics. 

We have carried out additional experiments with further configurations, using 
different baseline recommender systems, and different metric cutoffs, the results from 
which also confirm our findings. The results were similarly positive with movie director 
as the explicit feature space. We plan to further explore the relation between the feature 
space and the effectiveness of diversification, under the intuition that the effectiveness 
should benefit from a higher dependency between features and user interests. 
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4. A Unified Metric Framework for 
Recommendation Novelty and 
Diversity Evaluation 

Different evaluation metrics for novelty and diversity in Recommender Systems have 
been reported in the literature but the precise relation, distinction or equivalence 
between them has not been explicitly studied. Furthermore, the metrics reported so far 
miss important properties such as taking into consideration the ranking of recommended 
items, or whether items are relevant or not, when assessing the novelty and diversity of 
recommendations.  

We present a formal framework for the definition of novelty and diversity metrics 
that unifies and generalizes several state of the art metrics. We identify three essential 
ground concepts at the roots of novelty and diversity: choice, discovery and relevance, 
upon which the framework is built. Item rank and relevance are introduced through a 
probabilistic recommendation browsing model, building upon the same three basic 
concepts. Based on the combination of ground elements, and the assumptions of the 
browsing model, different metrics and variants unfold. We report experimental 
observations which validate and illustrate the properties of the proposed metrics. 

The contents of this chapter have been published in (Vargas & Castells, 2011). 

4.1 Introduction 
While most research in the Recommender Systems has focused on accuracy in matching 
user interests, there is increasing consensus in the community that accuracy alone is not 
enough to assess the practical effectiveness and added-value of recommendations 
(Herlocker, Konstan, Terveen, & Riedl, 2004 and McNee, Riedl, & Konstan, 2006). In 
particular, novelty and diversity are being identified as key dimensions of 
recommendation utility in real scenarios, and a fundamental research direction to keep 
making progress in the field. Businesses are accounting for these aspects when 
engineering recommendation functionalities, and researchers have started to seek 
principled foundations for incorporating novelty and diversity in the recommendation 
models, algorithms, theories, and evaluation methodologies (Celma & Herrera, 2008, 
Fleder & Hosanagar, 2009, Zhang & Hurley, Recsys, 2008 and Ziegler, McNee, 
Konstan, & Lausen, 2005). 

In this context, we identify the consolidation of a set of sound, well understood 
evaluation methodologies and metrics as a key issue to foster progress in this direction. 
Despite the raise of interest and work on the topic in recent years, we find that a clear 
common methodological and conceptual ground is still to be laid. Different evaluation 
metrics have been proposed in the literature but the relation, distinction or equivalence 
between them has not been explicitly studied. Furthermore, the metrics reported so far 
miss important properties such as taking into consideration the ranking of recommended 
items, or whether items are relevant or not, when assessing the novelty and diversity of 
recommendations. There is also variety in the principles and perspectives on which 
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different studies build, which would deserve analysis in order to better understand the 
potential connections and essential distinctions between them, fostering consensus and 
methodological convergence. 

Our research aims to contribute to the identification of some of these connections 
and provide a formal ground for the unification of different ways to measure novelty 
and diversity. We propose a formal metric framework that unifies and generalizes 
several state of the art measures, and enhances them with configurable properties not 
present in previously reported evaluations. Specifically, the proposed scheme supports 
metrics that take into account the ranking and relevance of recommended items. These 
properties are introduced by taking into account how users interact with 
recommendations –top items get more attention– and user subjectivity –items the user 
does not like add little to the effective diversity of the recommendation, no matter how 
novel the items were objectively.  

The proposed framework roots recommendation novelty and diversity metrics on a 
few ground concepts and formal models. We identify three essential concepts: choice, 
discovery and relevance, upon which the framework is built. The metric scheme takes at 
its core an item novelty model –discovery-based or distance-based– which mainly 
determines the nature of the resulting recommendation metric. Item rank and relevance 
are introduced through a probabilistic recommendation browsing model, building upon 
the same three basic concepts. Based on the combination of ground elements, and the 
assumptions in the browsing model, different metrics and variants unfold. We provide 
model estimation approaches on available observations of the interaction between users 
and items, thus providing for the practical computation of the metrics upon both explicit 
and implicit data. We report experimental observations validating and illustrating the 
properties of the proposed metrics. 

4.2 Proposed Framework 
The proposed metric framework is founded on three fundamental relations between 
users and items: 

• Discovery: an item is seen by (or is familiar to) a user. We consider this fact 
independently from the degree of enjoyment / dislike, or whether the user 
consumed the item or not. 

• Choice: an item is used, picked, selected, consumed, bought, etc., by a user. 
• Relevance: an item is liked, useful, enjoyed, etc., by a user. 
We model these three relations as binary random variables over the set of users and 

the set of items: 𝑠𝑒𝑒𝑛, 𝑐ℎ𝑜𝑜𝑠𝑒, 𝑟𝑒𝑙 ∶  ×  → {0,1}. These three variables are naturally 
related: a chosen item must obviously be seen, and relevant items are more likely to be 
chosen than irrelevant ones. As a simplification, we assume relevant items are always 
chosen if they are seen (as illustrated in Figure 10), irrelevant items are never chosen, 
and items are discovered independently from their relevance. In terms of probability 
distribution, all these assumptions can be expressed as: 

 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒)~𝑝(𝑠𝑒𝑒𝑛)𝑝(𝑟𝑒𝑙) (4.1)  

where 𝑐ℎ𝑜𝑜𝑠𝑒 is a shorthand for 𝑐ℎ𝑜𝑜𝑠𝑒 = 1, and same for the other two variables. 
Discovery, choice and relevance play different roles in our framework. Discovery is 
used as the basis to define item novelty models. Choice is used to build models of user 
browsing behavior over recommended lists of items. Together, browsing models and 
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item novelty models give rise to a fairly wide range of novelty and diversity metrics and 
variants, as we shall see.  

 
Figure 10. Discovery, choice and relevance models. 

The starting point of the proposed framework is a general scheme where a 
recommendation metric is defined as the expected novelty of the recommended items 
the user will choose. Given a ranked list 𝑅 of items recommended to a user 𝑢, this can 
be expressed as: 

 𝑚(𝑅|𝜃) = 𝐶�𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑖,𝑢,𝑅) 𝑛𝑜𝑣(𝑖|𝜃)
𝑖∈𝑅

 (4.2)  

where 𝐶 is a normalizing constant, and 𝜃 stands for a generic contextual variable which 
will allow for the consideration of different perspectives in the definition of novelty and 
diversity, as we will describe in the sections that follow. The metrics are thus 
determined by two main components: 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑖,𝑢,𝑅), reflecting a browsing model 
grounded on item choice, as we shall see; and 𝑛𝑜𝑣(𝑖|𝜃), an item novelty model. In this 
scheme, the novelty or diversity of a recommendation is thus measured as the aggregate 
novelty of its constituent items. But the novelty of each item is considered only 
inasmuch as the user will actually want to use this item –as represented by 
𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑖,𝑢,𝑅), denoting the probability that the target user 𝑢 actually decides to use 
item 𝑖, when delivered within a recommendation 𝑅. This component provides a handle 
to make the metric sensitive to item relevance, and position in the ranking. 

There are different ways in which the recommendation browsing model and item 
novelty can be developed. We describe them in detail in the next sections. For the time 
being, we intentionally denote the metric in formula 4.2 by a generic 𝑚, as it may 
reflect recommendation novelty or diversity depending on how the item novelty model, 
the browsing model, and 𝜃 are instantiated. 

4.3 Item Novelty Models 
Item novelty is the core element in the definition of recommendation novelty and 
diversity in our framework. Item novelty can be understood and defined in different 
ways, depending on which the resulting metrics differ considerably. We identify two 
main relevant approaches to model item novelty, based on discovery and distance 
respectively, which we describe next. The framework is nonetheless open to the 
modular integration of alternative models. 

4.3.1 Popularity-Based Item Novelty 
In a generic sense, item novelty can be defined as the difference between an item and 
“what has been observed” in some context. The notion of item discovery introduced in 
the previous section enables a formulation of this principle as the probability that an 
item was not observed before:  

  choose seen rel 
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 𝑛𝑜𝑣(𝑖|𝜃) = 1 − 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝜃) (4.3)  

The contextual variable 𝜃 here represents any element on which item discovery 
may depend, or relative to which we may want to particularize novelty. This might 
include e.g. a specific user, a group of users, vertical domains, time intervals, sources of 
item discovery –such as searching, browsing, past or alternative recommendations, 
friends, advertisements, etc. The specific instantiation of 𝜃 we develop here consists of 
the observed interactions between users and items, available to the system under 
evaluation. We will nonetheless briefly discuss in section 4.6.3 other interesting metrics 
that result when considering alternative contexts. 

In general terms, 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝜃) reflects a factor of item popularity, whereby high 
novelty values correspond to long-tail items few users have interacted with, and low 
novelty values correspond to popular head items. If we wish to emphasize highly novel 
items, we may also consider the log of the inverse popularity: 

 𝑛𝑜𝑣(𝑖|𝜃) = −log2 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝜃) (4.4)  

 Alternatively, one may also consider the Bayesian inversion of the discovery 
distribution, 𝑝(𝑖|𝑠𝑒𝑒𝑛,𝜃), which provides a relative measure of how likely items are to 
be seen with respect to each other. This leads to an interesting formulation of item 
novelty: 

 𝑛𝑜𝑣(𝑖|𝜃) = −log2 𝑝(𝑖|𝑠𝑒𝑒𝑛,𝜃) (4.5)  

This corresponds to the notion of self-information or surprisal 𝐼(𝑖), commonly used 
in Information Theory to measure novelty as the amount of information the observation 
of 𝑖 conveys (Zhou, Kuscsik, Liu, Medo, Wakeling, & Zhang, 2010). Interestingly, this 
distribution –to which we will refer as free discovery– can be directly connected to the 
previous one –which we will term forced discovery. Assuming items are sampled 
uniformly in the absence of discovery conditions –i.e. we assume a uniform 𝑝(𝑖|𝜃)–, it 
can be seen that 𝑝(𝑖|𝑠𝑒𝑒𝑛,𝜃) = 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝜃) ∑ 𝑝(𝑠𝑒𝑒𝑛|𝑗,𝜃)𝑗∈⁄ . The free and forced 
discovery models are therefore equivalent except for a normalizing constant 
∑ 𝑝(𝑠𝑒𝑒𝑛|𝑗,𝜃)𝑗∈  that depends only on 𝜃. In our experiments we have found that this 
constant does not introduce a significant difference in the resulting metrics, which 
suggests that both models –free and forced discovery– could be used indistinctly. 

4.3.2 Distance-Based Item Novelty 
The novelty model scheme defined in the previous section considers how different an 
item is from past experience in terms of strict Boolean identity: an item is new if it is 
absent from past experience (𝑠𝑒𝑒𝑛 = 0) and not new otherwise (𝑠𝑒𝑒𝑛 = 1). There are 
reasons however to consider relaxed versions of the Boolean view: the knowledge 
available to the system about what users have seen is partial, and therefore an item 
might be familiar to a user even if no interaction between them has been observed in the 
system. Furthermore, even when a user sees an item for the first time, the resulting 
information gain –the effective novelty– ranges in practice over a gradual rather than 
binary scale (consider for instance the novelty involved in discovering the movie 
“Rocky V”). 

As an alternative to the popularity-based view, we consider a similarity-based 
model where item novelty is defined by a distance function between the item and a 
context of experience. If the context can be represented as a set of items, for which we 
will intentionally reuse the symbol 𝜃, we can formulate this as the expected or minimum 
distance between the item and the set:  
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𝑛𝑜𝑣(𝑖|𝜃) = �𝑝(𝑗|𝑐ℎ𝑜𝑜𝑠𝑒,𝜃, 𝑖)𝑑(𝑖, 𝑗)
𝑗∈𝜃

 

or    𝑛𝑜𝑣(𝑖|𝜃) = min
𝑗∈𝜃

𝑑(𝑖, 𝑗) 

where 𝑝(𝑗|𝑐ℎ𝑜𝑜𝑠𝑒,𝜃, 𝑖) is the probability that the user chooses item 𝑗 in the context 𝜃, 
when she has already chosen 𝑖. The distance measure 𝑑 can be defined e.g. as the 
complement 𝑑(𝑖, 𝑗) = 1 − 𝑠𝑖𝑚(𝑖, 𝑗) of some similarity measure (cosine-based, Pearson 
correlation, etc., normalized to [0,1]) in terms of the item features –content-based view– 
or their user interaction patterns –collaborative view. Assuming a uniform 𝑝(𝑗|𝜃), it can 
be seen that: 

 𝑛𝑜𝑣(𝑖|𝜃) =
∑ 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑗,𝜃, 𝑖)𝑑(𝑖, 𝑗)𝑗∈𝜃

∑ 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑗,𝜃, 𝑖)𝑗∈𝜃
 (4.6)  

where the denominator acts as a normalizing constant for 𝜃. The forced choice 
probability is easier to compute than its free counterpart, as we shall see, and has a 
somewhat clearer interpretation: 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑗,𝜃, 𝑖) weights the sum in a way that the 
distance 𝑑(𝑖, 𝑗) is only counted if the user actually cared about 𝑗. This term plays a 
similar role as in equation 4.2, and can be developed as a browsing model –see next 
section–, or simplified to 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑗,𝜃, 𝑖)~1, in which case 𝑛𝑜𝑣(𝑖|𝜃) just becomes an 
average distance.  

In the context of distance-based novelty, we find two useful instantiations of the 𝜃 
reference set: a) the set of items a user has interacted with –i.e. the items in her profile–, 
and b) the set 𝑅 of recommended items itself. In the first case, we get a user-relative 
novelty version of equation 4.6, and in the second case, we get the basis for a 
generalization of intra-list diversity, as we will show. It is possible to explore other 
possibilities for 𝜃, such as groups of user profiles, browsed items over an interactive 
session, items recommended in the past or by alternative systems, etc., which we leave as 
future work. 

4.4 Browsing Model 
The browsing component of the metric scheme, as introduced in equation 4.2, is based 
on a distribution 𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑖,𝑢,𝑅) which we may model in terms of the user behavior 
in its interaction with a list of recommended items. There are many ways to model this 
behavior. Our approach takes inspiration in related work on user click models in 
information retrieval systems (Carterette, SIGIR, 2011, Clarke, et al., 2008, Hu, Zhang, 
Chen, & Wang, 2011, Moffat & Zobel, 2008 and Radlinski, Kleinberg, & Joachims, 
2008), but any other alternative modeling approach could be plugged into our 
framework. 

Our model goes as follows. First, we consider the target user will use all 
recommended items which she effectively gets to see and finds relevant for her taste. 
We had already formulated this view in equation 4.1, which in the current context 
becomes: 

𝑝(𝑐ℎ𝑜𝑜𝑠𝑒|𝑖,𝑢,𝑅)~𝑝(𝑠𝑒𝑒𝑛|𝑖,𝑢,𝑅)𝑝(𝑟𝑒𝑙|𝑖,𝑢) 
where we assume the relevance of an item is independent from the recommendation in 
which it is delivered. The 𝑝(𝑟𝑒𝑙|𝑖,𝑢) component introduces relevance in the definition 
of the metric: the novelty of a recommended item will be taken into account only as 
much as the item is likely to be relevant for the target user. 
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The 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝑢,𝑅) component represents the probability that the target user will 
actually see the item 𝑖 when she is browsing the ranked list 𝑅. This component allows 
for the introduction of a rank discount by having 𝑝(𝑠𝑒𝑒𝑛|𝑖, 𝑢,𝑅) reflect the fact that the 
lower an item is ranked in 𝑅, the less likely it will be seen. A realistic model may take 
into consideration that users eventually get tired of browsing, or get satisfied by enough 
items, or a combination of both, and stop browsing at some point before the end of the 
list, leaving a number of recommended items unread –which would play no part in the 
effective recommendation novelty the user will perceive.  

In general we assume a so-called cascade model (Clarke C. , Craswell, Soboroff, & 
Ashkan, 2011) where the user browses the items by ranking order without jumps, until 
she stops. At each position 𝑘 in the ranking, the user makes a decision whether or not to 
continue, which we model as a binary random variable 𝑐𝑜𝑛𝑡, where 𝑝(𝑐𝑜𝑛𝑡|𝑘,𝑢,𝑅) is 
the probability that user 𝑢 decides to continue browsing the next item at position 𝑘 + 1. 
With this scheme we have, by recursion: 

 
𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘,𝑢,𝑅) = 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘−1,𝑢,𝑅)𝑝(𝑐𝑜𝑛𝑡|𝑘 − 1,𝑢,𝑅)

= �𝑝(𝑐𝑜𝑛𝑡|𝑙,𝑢,𝑅)
𝑘−1

𝑙=1

 
(4.7)  

Now there are several ways –of varying complexity– in which 𝑝(𝑐𝑜𝑛𝑡|𝑙, 𝑢,𝑅) can 
be modeled. A simple one is to consider a constant 𝑝(𝑐𝑜𝑛𝑡|𝑙,𝑢,𝑅) = 𝑝0, whereby we 
get an exponential discount 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘,𝑢,𝑅) = 𝑝0𝑘−1. This is the approach taken in the 
RBP search performance metric (Moffat & Zobel, 2008). We may consider instead that 
the user will stop as soon as –and only when– she finds the first item of her taste. In that 
case, the discount is 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘,𝑢,𝑅) = ∏ �1 − 𝑝(𝑟𝑒𝑙|𝑖𝑙,𝑢)�𝑘−1

𝑙=1 , similar to the ERR 
metric (Chapelle, Metzler, Zhang, & Grinspan, 2009), or the models in (Radlinski, 
Kleinberg, & Joachims, 2008). We might consider more complex and general models, 
such as: 

𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘,𝑢,𝑅) = 𝑝(𝑐𝑜𝑛𝑡| ¬ 𝑟𝑒𝑙)𝑘−1��1 − 𝑝(𝑟𝑒𝑙|𝑖𝑙,𝑢)�
𝑘−1

𝑙=1

 

similar to (Clarke, et al., 2008), or 𝑝(𝑐𝑜𝑛𝑡|𝑙,𝑢,𝑅) = 𝑝(𝑐𝑜𝑛𝑡|𝑟𝑒𝑙)𝑝(𝑟𝑒𝑙|𝑖𝑙,𝑢) +
𝑝(𝑐𝑜𝑛𝑡| ¬ 𝑟𝑒𝑙)�1 − 𝑝(𝑟𝑒𝑙|𝑖𝑙,𝑢)�, and so forth. In general, we may use any decreasing 
rank discount function 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘,𝑢,𝑅) = 𝑑𝑖𝑠𝑐(𝑘) we deem suitable, even heuristic 
ones, such as a logarithmic discount as in nDCG, a Zipfian discount, etc., or even no 
discount by 𝑑𝑖𝑠𝑐(𝑘) = 1, as if the user always browsed the whole list. Putting all this 
together, equation 4.2 can be rewritten as a configurable rank-sensitive, relevance aware 
metric scheme: 

 𝑚(𝑅|𝜃) = 𝐶 � 𝑑𝑖𝑠𝑐(𝑘)𝑝(𝑟𝑒𝑙|𝑖𝑘,𝑢)𝑛𝑜𝑣(𝑖𝑘|𝜃)
𝑖𝑘∈𝑅

 (4.8)  

We are now in a position to define the normalizing constant 𝐶, which is intended to 
stabilize the metric against unwanted biases. Two normalization approaches are 
commonly considered in information retrieval metrics, which define 1 𝐶⁄  respectively 
as: a) the maximum metric value obtainable by an ideal recommendation ranking, e.g. 
as in nDCG and  α-nDCG (Clarke, et al., 2008), or b) the expected browsing depth, as 
in RBP (Moffat & Zobel, 2008) and discussed in (Clarke C. , Craswell, Soboroff, & 
Ashkan, 2011). Computing the ideal ranking is metric-specific and often costly, 
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sometimes even NP-hard, though it can be approximated by greedy approaches (Clarke, 
et al., 2008). The expected browsing depth is more straightforward to compute: 

1
𝐶

= � 𝑘 · 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘,𝑢)�1 − 𝑝(𝑐𝑜𝑛𝑡|𝑖𝑘,𝑢)�
𝑖𝑘∈𝑅

 

= � 𝑘�𝑑𝑖𝑠𝑐(𝑘) − 𝑑𝑖𝑠𝑐(𝑘 + 1)�
𝑖𝑘∈𝑅

= � 𝑑𝑖𝑠𝑐(𝑘)
𝑖𝑘∈𝑅

  

where we define 𝑑𝑖𝑠𝑐(𝑘) = 0 if 𝑘 > |𝑅| (i.e. 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝑅)~0 if 𝑖 ∉ 𝑅). It can be seen 
that with no rank discount (𝑑𝑖𝑠𝑐(𝑘) = 1) we have 𝐶 = 1 |𝑅|⁄  (average relevance-
weighted item novelty). 

In order to make this scheme fully implementable, we need to provide practical 
methods to estimate the primary models –discovery and relevance– upon which we 
have built the framework, based on observed data. We do this in the next section. 

4.5 Estimation of Ground Models 
4.5.1 Item Discovery 
The estimation of the discovery model depends on our definition of 𝜃 and the type of 
available data. If we take 𝜃 as the set of observed interactions between users and items 
in the system, and the data consists of user ratings for items represented as a functional 
relation 𝜃 ≡ 𝑟 ∶ ×  → , we may take a maximum likelihood model estimate by: 

 𝑝(𝑠𝑒𝑒𝑛|𝑖, 𝑟)~
|𝐢|
|| =

|{𝑢 ∈ |𝑟(𝑢, 𝑖) ≠ ∅}|
||  (4.9)  

where 𝐢 denotes the set of users who have rated 𝑖, and 𝑟(𝑢, 𝑖) ≠ ∅ means the rating of 𝑢 
for 𝑖 is known. If the available data consists of implicit preference observations in the 
form of a set 𝜃 ≡  of user/item/timestamp records, the estimate would be: 

 𝑝(𝑠𝑒𝑒𝑛|𝑖,)~
|𝐢|
|| =

|{𝑢 ∈ |∃𝑡 ∈  ∶ (𝑢, 𝑖, 𝑡) ∈ }|
||  (4.10)  

 being the timestamp data type. Note that with these estimates, item novelty in 
equation 4.4 becomes the inverse user frequency IUF. The free novelty model can also 
be estimated over ratings or implicit data, respectively, as: 

 𝑝(𝑖|𝑠𝑒𝑒𝑛, 𝑟)~
|𝐢|

∑ |𝐣|𝑗∈
=

|{𝑢 ∈ |𝑟(𝑢, 𝑖) ≠ ∅}|
|{(𝑢, 𝑗) ∈  × |𝑟(𝑢, 𝑗) ≠ ∅}| (4.11)  

 𝑝(𝑖|𝑠𝑒𝑒𝑛,)~
|𝐢|

∑ |𝐣|𝑗∈
=

|{𝑢 ∈ |∃𝑡 ∈  ∶ (𝑢, 𝑖, 𝑡) ∈ }|
|{(𝑢, 𝑗) ∈  × |∃𝑡 ∈  ∶ (𝑢, 𝑖, 𝑡) ∈ }| (4.12)  

With the rating-based estimate (equation 4.11), equation 4.5 becomes the so-called 
inverse collection frequency ICF. 

4.5.2 Item Relevance 
Relevance in the context of recommendation is a user-specific notion which can be 
equated to the interest of users for items. How relevance can be modeled depends again 
on the nature of available observations. If the available input consists of explicit user 
ratings, the probability of items being liked can be modeled by a heuristic mapping 



44  4. A Unified Metric Framework for 
Recommendation Novelty and Diversity Evaluation 

 

between rating values and probability of relevance. For instance, drawing from the ERR 
metric scheme (Chapelle, Metzler, Zhang, & Grinspan, 2009): 

 𝑝(𝑟𝑒𝑙|𝑖,𝑢)~
2𝑔(𝑢,𝑖) − 1

2𝑔𝑚𝑎𝑥
 (4.13)  

where 𝑔 is a utility function to be derived from ratings, e.g. 𝑔(𝑢, 𝑖) = max(0, 𝑟(𝑢, 𝑖) −
τ), where τ represents the “indifference” rating value, as described by Breese, 
Heckerman, & Kadie (1998). In our experiments we try a slight variation with respect to 
(Chapelle, Metzler, Zhang, & Grinspan, 2009): we do not subtract 1 in the numerator in 
order to avoid a drastic loss of novelty signal by overfitting to zero the probability of 
unobserved relevance. 

For usage logs, a correspondence can be fairly established between item usage 
counts and user interest, which we account for in two steps. First, we normalize the 
observed item access frequencies of each user to a common rating scale [0,𝑛], as 
proposed in (Celma & Herrera, 2008). Namely, 𝑟(𝑢, 𝑖) ⟵ 𝑛 ∙ 𝐹�𝑓𝑟𝑒𝑐𝑢,𝑖�, where 𝑓𝑟𝑒𝑐𝑢,𝑖 
is the number of times 𝑢 has accessed 𝑖, and 𝐹�𝑓𝑟𝑒𝑐𝑢,𝑖�~ ��𝑗 ∈ 𝐮�𝑓𝑢,𝑗 ≤ 𝑓𝑢,𝑖�� |𝐮|⁄  is the 
cumulative distribution function of 𝑓𝑟𝑒𝑐𝑢,𝑖 over the set of items in the profile of 𝑢 –
denoted as 𝐮. Then we apply to these ratings the same mapping as before (equation 
4.13), this time with τ = 0 –assuming that accessing an item, however infrequently, does 
not in general reflect a negative preference. 

4.6 Recommendation Novelty and Diversity Metrics 
4.6.1 Novelty 
By plugging the popularity-based item novelty models (section 4.3.1) in the general 
metric scheme (equation 4.8), we get discovery-based recommendation novelty metrics. 
For instance, taking equation 4.3, we get: 

 EPC = 𝐶 � 𝑑𝑖𝑠𝑐(𝑘)𝑝(𝑟𝑒𝑙|𝑖𝑘,𝑢)�1 − 𝑝(𝑠𝑒𝑒𝑛|𝑖𝑘)�
𝑖𝑘∈𝑅

 (4.14)  

which we label as expected popularity complement (EPC). Equations 4.4 and 4.5 
similarly lead to alternative formulations, to which we shall refer as expected inverse 
popularity (EIP), and expected free discovery (EFD), respectively. All three metrics 
provide a measure of the ability of a system to recommend relevant long-tail items. EPC 
can be read as the expected number of seen relevant recommended items not previously 
seen. EIP and EFD can be read as the expected IUF and ICF of (relevant and seen) 
recommended items, respectively. Note that if we ignore rank and relevance, then 
EFD = − 1

|𝑅|
∑ log2 𝑝(𝑖|𝑠𝑒𝑒𝑛)𝑖∈𝑅 , the mean self-information (MSI) of the recommended 

items, a metric reported in (Zhou, Kuscsik, Liu, Medo, Wakeling, & Zhang, 2010). 

If we take a distance-based novelty model (equation 4.6) relative to the set of items 
the target user has interacted with 𝜃 ≡ 𝐮 –i.e. the items in her profile– we get an 
alternative novelty measure consisting of the expected distance between the 
recommended items and the items in the user profile, which we label as the expected 
profile distance (EPD):  

 EPD = 𝐶′ � 𝑑𝑖𝑠𝑐(𝑘)𝑝(𝑟𝑒𝑙|𝑖𝑘,𝑢)𝑝(𝑟𝑒𝑙|𝑗,𝑢)𝑑(𝑖𝑘, 𝑗)
𝑖𝑘∈𝑅,𝑗∈𝐮

 (4.15)  
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where 𝐶′ = 𝐶 ∑ 𝑝(𝑟𝑒𝑙|𝑗,𝑢)𝑗∈𝐮⁄ . In this case, each term in the summation is doubly 
weighted by the relevance of the involved item pair, and only once by the rank distance 
function. This is because we assume 𝑝(𝑠𝑒𝑒𝑛|𝑖) = 1 for items in the user profile. The 
metric provides a user-relative measure of novelty which, as far as we are aware of, has 
not been reported in the literature. 

4.6.2 Diversity 
In the distance-based model, if we take 𝜃 ≡ 𝑅, we get a measure of recommendation 
diversity: 

 
EILD = � 𝐶𝑘𝑑𝑖𝑠𝑐(𝑘)𝑑𝑖𝑠𝑐(𝑙|𝑘)𝑝(𝑟𝑒𝑙|𝑖𝑘,𝑢)𝑝(𝑟𝑒𝑙|𝑖𝑙,𝑢)𝑑(𝑖𝑘, 𝑖𝑙)

𝑖𝑘,𝑖𝑙∈𝑅
𝑘≠𝑙

 
(4.16)  

where 𝑑𝑖𝑠𝑐(𝑙|𝑘) = 𝑑𝑖𝑠𝑐(max(1, 𝑙 − 𝑘)) reflects a relative rank discount for an item at 
position 𝑙 knowing that position 𝑘 has been reached. This general form provides a 
doubly rank-sensitive and rank-aware expected intra-list diversity metric. In this case 
the normalizing constant is 𝐶𝑘 = 𝐶 ∑ 𝑑𝑖𝑠𝑐(𝑙|𝑘)𝑝(𝑟𝑒𝑙|𝑖𝑙 ,𝑢)𝑖𝑙∈𝑅−{𝑖𝑘}⁄ . If we remove the 
rank discount and relevance weighting, the metric reduces to: 

𝑑𝑖𝑣(𝑅|𝑢) =
2

|𝑅|(|𝑅| − 1) � 𝑑(𝑖𝑘, 𝑖𝑙)
𝑖𝑘∈𝑅,𝑙<𝑘

= ILD 

Equation 4.16 thus generalizes the average intra-list distance (ILD) (Zhang & 
Hurley, RecSys, 2008 and Ziegler, McNee, Konstan, & Lausen, 2005) with the 
introduction of rank-sensitivity and relevance. 

4.6.3 Further Unification 
By explicitly modeling novelty as a relative notion, the proposed framework has a 
strong unifying potential of further novelty and diversity conceptions. In other to 
illustrate this, let us consider the notion of temporal diversity proposed in (Lathia, 
Hailes, Capra, & Amatriain, 2010), which we will refer to as self-system diversity 
(SSD). It is defined as the ratio of recommended items that were not included in a 
previous recommendation: 

 SSD(𝑅|𝑢) =
|𝑅 ∖ 𝑅𝑡−1|

|𝑅|  (4.17)  

𝑅𝑡−1 being the last recommendation delivered by the system for 𝑢 before 𝑅. This notion 
can be described in our framework in terms of a discovery model where the source of 
discovery is the last recommendation, as follows. Taking 𝜃 ≡ 〈𝑢,𝑅𝑡−1〉 as the context of 
discovery, we get 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝜃) = 𝑝(𝑠𝑒𝑒𝑛|𝑖,𝑢,𝑅𝑡−1) = 𝑑𝑖𝑠𝑐(𝑖|𝑅𝑡−1), where the latter 
represents the discount that corresponds to the position of 𝑖 in 𝑅𝑡−1 (0 if 𝑖 ∉ 𝑅𝑡−1). 
Thus, the novelty of an item is defined by a browsing model over the last 
recommendation. Plugging this into the general metric scheme gives: 

𝑑𝑖𝑣(𝑅|𝑢) = ESSD = 𝐶 � 𝑑𝑖𝑠𝑐(𝑘)𝑝(𝑟𝑒𝑙|𝑖𝑘,𝑢)�1 − 𝑑𝑖𝑠𝑐(𝑖𝑘|𝑅𝑡−1)�
𝑖𝑘∈𝑅

 

If we ignore rank and relevance in 𝑅, and rank in 𝑅𝑡−1 –that is, we take 
𝑝(𝑠𝑒𝑒𝑛|𝑖, 𝑢,𝑅𝑡−1)~1𝑅𝑡−1(𝑖)– it can be seen that we get the original SSD expression in 
equation 4.17. Thus our framework provides again a formalization and generalization of 
the metric with the possibility to easily introduce rank and relevance.  
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This scheme can be similarly applied to other novelty and diversity metrics, such as 
temporal novelty as defined in (Lathia, Hailes, Capra, & Amatriain, 2010), inter-system 
novelty (novelty of recommended items with respect to recommendations that 
alternative systems may procure), or inter-user diversity (with respect to the 
recommendations other users are getting) as defined in (Bellogín, Cantador, & Castells, 
2010). Table 2 summarizes some of the metrics that can be unified in our framework by 
different instantiations of 𝜃 in the item novelty scheme.  

Metric scheme Context 𝜽 User 
perspective Generalizes 

Long tail 
(popularity) 

Ratings 𝑟 
or  frequencies  Novelty 

Mean self-information (Zhou, 
Kuscsik, Liu, Medo, Wakeling, 

& Zhang, 2010) 

Distance-based 

Target user 𝑢 Novelty - 

Recommendation 𝑅 Diversity 

Intra-list diversity (Zhang & 
Hurley, RecSys, 2008) (Ziegler, 

McNee, Konstan, & Lausen, 
2005) 

Alternative 
discovery 
sources 

Last recommen- 
dation 〈𝑢,𝑅𝑡−1〉 

Novelty 
Self-system diversity (Lathia, 
Hailes, Capra, & Amatriain, 

2010) 
All previous 

recommendations 
〈𝑢,𝐴𝑡−1〉 

Novelty 
Self-system novelty (Lathia, 
Hailes, Capra, & Amatriain, 

2010) 
Recommendations 

by other systems 〈𝑢,〉 Novelty Inter-system novelty (Bellogín, 
Cantador, & Castells, 2010) 

Recommendations 
to other users 〈, 𝑠〉 Novelty Inter-user diversity (Bellogín, 

Cantador, & Castells, 2010) 

Table 2. Unification of state of art novelty and diversity metrics in the proposed 
metric framework. 

4.7 An Example 
In order to illustrate the effects of the proposed metrics, and in particular the rank 
discount and relevance weighing, we show here the computation of some variants over a 
small artificial example. We select the EPC metric scheme (equation 4.14), which for 
illustrative purposes is representative of similar effects in the other metrics. 

Assume we have a system with 1,000 users, and a target user 𝑢 with 8 items in her 
profile. For simplicity, assume the rating scale is binary {0,1}, with indifference value 
τ = 0. Assume we have two systems which deliver recommendations 𝑅1 and 𝑅2 to 𝑢 
respectively, with the content shown in Table 3. In the example we just show the known 
rating value 𝑟(𝑢, 𝑖) of each item by the target user (i.e. relevance), and the popularity of 
the items in terms of the number of users who have rated each. It is easy to see that both 
recommendations do equally well in terms of returned relevant items, but 𝑅2 does a 
better job at ranking long-tail items (with few ratings) by the top of the list. 
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 𝑅1  𝑅2 

Position  𝑟(𝑢, 𝑖) # raters   𝑟(𝑢, 𝑖) # raters  
1  1 1000  1 10 
2  1 1000  1 10 
3  1 500  1 10 
4  1 500  1 500 
5  1 10  1 500 
6  1 10  1 1000 
7  1 10  1 1000 
8  0 10  0 1000 
9  0 10  0 10 
10  0 10  0 10 

Table 3. An illustrative example. 

Based on equations 4.9 and 4.13 for discovery and relevance model estimation 
respectively, and using a logarithmic rank discount 𝑑𝑖𝑠𝑐(𝑘) = 1 log2(𝑘 + 1)⁄ , we get 
the metric values shown in Table 4. The best result is bolded for each metric. According 
to EPC ignoring relevance and rank, 𝑅1 performs better than 𝑅2, because it includes an 
equal number of relevant items, but a more novel, long-tail item in position 8 (with 10 
vs. 1000 ratings). EPCrel does not count this difference because the item at that position 
is not relevant, whereby both lists get the same metric value. Considering rank but not 
relevance, EPCrank detects that 𝑅1 does a poor job at ranking the novel items in the list 
compared to 𝑅2, even if the novel item at position 8 is appreciated by the metric (which 
does not care that the item is non-relevant). Combining both rank and relevance, 𝑅2 
scores best, by the highest difference of all metrics. If we agree that 𝑅2 is objectively 
better than 𝑅1, EPCrank,rel is the metric that best discriminates this fact. 

To compensate for the lack of relevance awareness of diversity metrics, prior work 
has used complementary accuracy measures. To further illustrate the utility of a 
configuration integrating rank and relevance-awareness in a single metric, as opposed to 
the combination of two separate measures, we show in the last row of the table one such 
combination: the harmonic mean of nDCG (pure accuracy, rank aware) and EPC (pure 
novelty). This combined metric prefers 𝑅1 to 𝑅2 because it has one more novel item at 
position 8. But the metric fails to realize that this item is not relevant, and furthermore it 
disregards the fact that all the novel items aside this one are sorted fairly worse in 𝑅1 
than in 𝑅2. In contrast, EPCrank,rel does not suffer from these shortcomings. 

 𝑑𝑖𝑠𝑐(𝑘) 𝑝(𝑟𝑒𝑙|𝑖,𝑢) 𝑅1 𝑅2 
nDCG - - 0.9202 0.9202 
EPC 1 1 0.6940 0.5950 
EPCrank 1 log2(𝑘 + 1)⁄  0.5343 0.6829 
EPCrel 1 2𝑔(𝑢,𝑖) − 1

2𝑔𝑚𝑎𝑥  
0.3970 0.3970 

EPCrank,rel 1 log2(𝑘 + 1)⁄  0.3370 0.5543 
H (nDCG, EPC) 1 1 0.7913 0.7227 

Table 4. Resulting values of different metrics for the two example 
recommendations, combining different rank and relevance configurations in the 
EPC novelty metric. 
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4.8 Experimental Results 
We have tested our framework in different metric configurations on two datasets –
explicit and implicit data– with several baseline recommenders and diversification 
methods. On the one hand, we have used the MovieLens 1M dataset, which includes 
one million ratings by 6,040 users for 3,900 items. For an implicit preference dataset, 
we have used an extract from Last.fm provided by Celma & Herrera (2008), including 
the full listening history of 992 users till May 2009. The data involves 176,948 artists 
and a total of 19,150,868 user accesses to music tracks. For the computation of the 
proposed metrics, the data are split into training and test sets. In MovieLens we use the 
five 80-20% rating splits provided in the dataset distribution, providing for 5-fold cross-
validation. In the Last.fm dataset, we apply a temporal split leaving 80% of scrobblings 
in the “past” for training, and the 20% most recent for testing. 

 CB MF UB AVG RND 
MovieLens1M 0.1113 0.2136 0.1463 0.1497 0.0332 
Last.fm - 0.3081 0.5797 0.0392 0.0107 

Table 5. Accuracy of the tested baselines, measured in nDCG@50 over the two 
datasets. 

We run three representative state of the art recommender system algorithms on the 
two datasets, namely, a user-based kNN recommender with 100 neighbors (UB), a 
matrix factorization algorithm (Koren, Bell, & Volinksy, 2009) with 50 latent factors 
(MF), and a content-based algorithm (CB). The latter is only tested on MovieLens using 
movie genres, as the Last.fm dataset does not include content features to support a CB 
recommender. For further reference, we test two additional probe baselines: average 
rating (AVG), and random recommendation (RND). The recommenders are run on  
Last.fm by mapping access frequencies to ratings as proposed in (Celma & Herrera, 
2008), taking artists as items. In order to give a reference on the behavior of the 
baselines in terms of accuracy, we show their nDCG@50 in Table 5. 

The discovery models (equations 4.3-4.5) are built on training data –since they do 
not involve target users– and the relevance models (equation 4.13) on test data. The 
estimation of the discovery models is based on equations 4.9 and 4.11 for MovieLens 
(explicit ratings) and equations 4.10 and 4.12 for Last.fm (item access log). The 
browsing models build exclusively on test data (for relevance, equation 4.13) and 
recommenders’ output (for recommendation discovery distribution, equation 4.7). The 
distance-based metrics compare items in terms of their genres in MovieLens, and their 
test ratings in Last.fm, as the complement of the Jaccard and Pearson similarities (shifted 
to [0,1]), respectively. We measure all metrics at a top 50 ranking cutoff. 

4.8.1 Pure and Relevance-Aware Metrics 
Figure 11 shows how the tested recommenders compare on different metrics, namely 
EPC, EPD, and EILD (equations 4.14, 4.15, 4.16). We omit EIP (log of inverse 
popularity), and EFD (free discovery model) as they yield equivalent measurements to 
EPC –aside a matter of scale– in terms of the relative comparison of recommenders in 
all configurations. We first focus on the relevance-unaware metric versions (top two 
graphics in the figure). A first interesting observation is that CB is better than the CF 
recommenders in popularity-based novelty (confirming findings in Celma & Herrera, 
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2008), but is worse at diversity and user-specific novelty. This is what one would 
expect: CB concentrates recommendations around the users’ profile, hereby scoring low 
on EPD. Being similar to the profile, recommended items are also similar among 
themselves, which explains the low EILD. UB and MF avoid such shortcomings, but 
they tend to concentrate recommendations on items with enough available ratings to 
infer recommendations. Hence they have a bias towards popular items –penalized by the 
popularity-based metrics– which CB does not suffer from (this is related to the well-
known suitability of CB for cold-start items). AVG does not show any particular trend, 
as it is mostly independent from popularity and the other signals the metrics are sensitive 
to. Note that in AVG we apply a linear rating penalization on items with less than five 
raters, to avoid single-rater favorites (as low-confidence averages) to swamp the top of 
recommendations –in which case AVG would score much higher on novelty. Finally, 
random recommendation gets the highest values in all relevance-unaware metrics (except 
for some near ties on MovieLens), illustrating the fact that pure novelty and diversity 
metrics alone are not enough –note to this respect that such configurations of EILD and 
EPC (insensitive to rank and relevance) correspond to state of the art metrics (Zhang & 
Hurley, RecSys, 2008, Zhou, Kuscsik, Liu, Medo, Wakeling, & Zhang, 2010 and Ziegler, 
McNee, Konstan, & Lausen, 2005). 

 
Figure 11. Novelty and diversity metrics are shown on four baselines (content-
based, matrix factorization, user-based kNN, average, and random) over 
MovieLens 1M –two graphics on the left– and Last.fm –right. The top two 
graphics display metrics that ignore relevance, whereas the bottom ones are 
relevance-aware. All the metrics in the figure are rank-insensitive. 

The two bottom graphics in Figure 11 show the relevance-aware variant of the 
metrics. With this configuration MF takes the lead on MovieLens data. It was very 
similar to UB on pure novelty, but it beats UB on relevance (see Table 5), and has a 
good trade-off between novelty and relevance compared to the other recommenders. 
The reverse situation occurs on Last.fm, where UB has higher accuracy than MF. 
Random gets a drastic drop in both cases for its lack of accuracy –to which respect this 
metric variant thus behaves better than the pure novelty and diversity metrics. CB gets a 
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noticeable decrease as well, for a similar (though not as extreme) reason. The lesser 
quality of AVG recommendations –hence their lower actual ratio of useful diversity– is 
also evidenced by relevance awareness, particularly in Last.fm. 

4.8.2 Rank Sensitiveness 
Rank-aware metric configurations should not discriminate the baselines much further 
than this, since none of the recommenders target novelty, and whatever amount they get 
is by unsought reasons –their share of novelty is randomly ordered. In order to test rank 
sensitivity, we set up three diversification strategies that do optimize for novelty and 
diversity. The diversifiers re-rank the top n recommended items (n = 500 in our 
experiment) returned by a baseline recommender, by greedily optimizing an objective 
function. Specifically, we adapt a) the diversification strategy proposed in (Ziegler, 
McNee, Konstan, & Lausen, 2005), which we term Maximal Marginal Relevance 
(MMR) for its connection to the approach described in (Carbonell & Goldstein, 1998), 
where the objective function is a trade-off of accuracy and diversity –namely, a linear 
combination (we take equal weights λ = 0.5) of the baseline rating prediction 
(accuracy) and the average dissimilarity to the items above each position (diversity); b) 
a variant of the latter, which we call novelty-based greedy diversification (NGD), where 
a function targeting unpopularity (IUF as defined by equation 4.4) is used in place of 
the dissimilarity component; and c) an adaptation of the IA-Select algorithm (Agrawal, 
Gollapudi, Halverson, & Ieong, 2009), originally devised for search diversification and 
adapted in chapter 3. Additionally, we include a random re-ranking. 

Table 6 shows the results on diversifying the MF baseline, confirming consistent 
trends with the sought metric properties. We may observe, first, that without relevance, 
few diversifiers beat the random re-ranking, although some do –e.g. NGD on EPC, 
consistently with its quite specific optimization target. However, with relevance, 
random is always worst, except for NGD on MovieLens: this diversifier promotes 
unpopular items, which tend to score low on overall relevance –still, with rank discount 
NGD also beats the random approach. IA-Select seems to be the best diversifier in 
terms of the trade-off between relevance and diversity. Its results particularly stand out 
on Last.fm with relevance, even better with rank discount, and best of all on EILD, 
since this algorithm specifically targets diversity, above novelty. It can also be seen that 
the baseline is less easy to beat in the relevance-aware metrics, although some 
diversifiers manage to do so, most-notably IA-Select. 

We may also observe that the rank discount (we test 𝑑𝑖𝑠𝑐(𝑘) =  
0.85𝑘−1 based on Moffat & Zobel, 2008) changes the sign of comparison in several cases. 
To point out a few: without relevance, this occurs for IA-Select vs. MMR on EPC and vs. 
the baseline on EPD, on Last.fm, or IA-Select vs. the baseline on EPC on MovieLens. On 
Last.fm with relevance, NGD switches from underperforming to overperforming the 
baseline and MMR on all three metrics. The difference in IA-Select captured by adding 
rank to EILD with relevance in Last.fm is particularly noteworthy. All these examples 
show how the rank sensitivity uncovers improvements that would otherwise go unnoticed. 

4.9 Conclusion 
The research presented here aims to contribute to a shared characterization and 
understanding of the basic elements involved in recommendation novelty and diversity 
upon a formal foundation. The proposed framework provides a common ground for the 
development of metrics based on different perspectives on novelty and diversity, 
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generalizing metrics reported in the literature, and deriving new ones. An advantage of 
the proposed decomposition into a few essential modular pieces is a high potential for 
generalization and unification. Two novel features in novelty and diversity 
measurement arise from our study: rank sensitivity, and relevance awareness. Both 
aspects are introduced in a generalized way by easy to configure components in any 
metric supported by our scheme. Our experiments validate the proposed approach and 
provide further observations on the behavior of metric variants. As future work, we plan 
to complement our off-line experiments with on-line tests where the different metric 
configurations are contrasted to actual user feedback on the recommendation quality 
and utility aspects we seek to measure. 

 

   EPC@50 EPD@50 EILD@50 
  𝑑𝑖𝑠𝑐(𝑘) 1 0.85k-1 1 0.85k-1 1 0.85k-1 
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e MF 0.9124 0.8876 0.7632 0.7466 0.7164 0.6191 
IA-Select 0.9045 0.8886 0.8080 0.7577 0.8289 0.7483 
MMR 0.9063 0.8769 0.7605 0.7428 0.7191 0.6247 
NGD 0.9851 0.9795 0.7725 0.7551 0.6563 0.5430 
Random 0.9525 0.9527 0.7699 0.7699 0.7283 0.6719 

R
el

ev
an

ce
 MF 0.0671 0.1043 0.0580 0.0944 0.0471 0.0551 

IA-Select 0.0705 0.1161 0.0639 0.1032 0.0537 0.0648 
MMR 0.0719 0.1131 0.0620 0.1020 0.0510 0.0610 
NGD 0.0155 0.0223 0.0128 0.0200 0.0067 0.0017 
Random 0.0222 0.0218 0.0182 0.0179 0.0117 0.0058 
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.fm
 

N
o 

re
le

va
nc

e MF 0.8754 0.8481 0.8949 0.8895 0.8862 0.7954 
IA-Select 0.8840 0.9089 0.8912 (0.8909) (0.8878) 0.8274 
MMR 0.9068 0.8903 0.9133 0.9107 0.9166 0.8398 
NGD 0.9722 0.9571 0.9423 0.9398 0.9485 0.8784 
Random 0.9359 0.9357 0.9278 0.9279 0.9318 0.8619 

R
el

ev
an

ce
 MF 0.2501 0.2115 0.2671 0.2587 0.2518 0.1900 

IA-Select 0.3343 0.4752 0.3462 0.3994 0.3343 0.4154 
MMR 0.2351 0.1936 0.2439 0.2340 0.2360 0.1759 
NGD 0.2286 0.3077 0.2212 (0.2593) 0.2165 0.2656 
Random 0.1362 0.1368 0.1407 0.1405 0.1342 0.1113 

Table 6. Results on EPC, EPD, EILD on different diversifications of the MF 
baseline recommender, with all relevance and rank discount combinations. For the 
rank-sensitive variants an exponential discount is used as in (Moffat & Zobel, 
2008), with power base 0.85. Values better than random are in bold, values below 
the baseline in italics, and the best recommendation for each metric is underlined. 
All differences with respect to random and baseline are statistically significant 
(Wilcoxon p < 0.001) except when in parenthesis (respect to the MF baseline). 
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5. Conclusions 

5.1 Summary and Contributions 
Novelty and diversity for RS and IR have received increasing interest in the last years. 
Both properties are essential in RS for real-word scenarios and applications –such as 
online commerce–, where the aggregated relevance of individual items or document 
does not necessarily guarantee an optimal or even satisfactory user experience. Novelty 
and discovery are directly linked with avoiding the monotony and obviousness of 
recommendations, thus improving the capacity of discovery and broadening and 
enriching the user experience. 

Such concerns are relatively recent in IR and RS, many open questions remain and 
motivate further research. For one, the RS and IR communities have addressed novelty 
and diversity quite differently, which brings about the opportunity to investigate 
connections, equivalences and differences. 

Our work focuses in the enhancement and evaluation of novelty and diversity in 
RS, specifically: 

• Concerning the enhancement, we have proposed an adaptation of diversification 
methods of IR to RS, such as the MMR and IA-Select algorithms, by defining 
the concept of aspect space to represent the variety of interests of the user as 
equivalence to query intents. We extract aspect spaces from item feature data 
and latent information between users and item. 

• Regarding the evaluation, we also used aspect spaces to adapt intent-aware 
metrics to RS, such as ERR-IA, nDCG-IA and α-nDCG, and provided a unified 
metric framework that includes some of the state of the art metrics for novelty 
and diversity in RS, such as ILS, MSI, and others, and allows their extension to 
consider further important properties of recommendation lists such as the rank 
and relevance of recommended items. We derived and formalized further 
metrics based on inverse popularity, such as EPC, EIP and EFD, based on the 
distance with the user profile as EPD and based on the distance between the 
elements of a recommendation list, such as EILD. 

• Experiments conducted on datasets from MovieLens and Last.fm provided 
empiric evidence of the effectiveness of our IR diversification approach and 
allowed for observation and analysis of the characteristics of the different 
metrics derived from the framework. 

Our contributions provide new ways of stating, formalizing and addressing the 
problems of novelty and diversity in RS. On one side our adaptation of IR diversity 
techniques to RS allows the advances made on the first to be applied on the latter. On 
the other side, the metric framework for novelty and diversity provides a platform for 
analysis of common components of metrics based on simple properties of 
recommendation lists. We thus aim to elaborate a more comprehensive perspective 
which focuses on user satisfaction rather than just individual accumulated relevance or 
error minimization, as has been traditionally the case in the field. 
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5.2 Discussion and Future Work 
Several topics addressed here motivate further analysis and research. We point here 
towards some of our ongoing research directions and improvements in progress. 

5.2.1 Explicit Aspect Spaces Extraction 
The goodness of item features for diversification is a factor that has not been explicitly 
examined. Consider the case of the experiments with the MMR algorithm in chapter 3. 
Since we used movie genres as features as aspects, it is very likely that the possible 
distance values defined by set intersection reduce to a very small set, since the set of 
genres is relatively small (18) and movies usually have few of them (1.72 in average). 
This would not be the case of implicit aspect spaces, where a higher-dimensional vector 
space with real valued components is created. Other aspects, such as the distribution of 
features over items, can be determinant to the effectiveness of diversification 
algorithms. Therefore we doubt that every item features set, though representative, 
could be flexible enough to our diversification methods. 

One possible solution to the previous problems would be the use more than one 
feature type (genre, language, country, location, etc.) to balance or compensate 
weaknesses of separated features. Some initial work towards the determination of 
goodness of item features has been done in (Vargas, Castells, & Vallet, 2012). 

5.2.2 Implicit Aspect Spaces Extraction 
Continuing with the extraction of aspect spaces, we made a direct adaptation of the 
implicit factors of matrix factorization algorithms as item features and proceeded like 
the case of explicit features. While this approach works well, it is possible to refine it, 
e.g. beyond a binary approach. Since vector dimensions may have different magnitudes 
(in terms of variance) the selection of dimensions for an item may be biased to factors 
with high magnitude but little relative significance to the item. A normalization step  
might provide enhanced results on this point. The binarization itself may in fact no 
longer be required after a normalization of the vector space dimensions. A probabilistic 
model that would transform smoothly from vector components 𝑞𝑖 to probabilities 𝑝(𝑓|𝑖) 
might be applied instead, and it should also deal with negative values of the vector 
components. Finally, in our proposal we estimated 𝑝(𝑓|𝑢) as we did in the case of item 
features, where there is no direct information between features and users, but this is not 
the case. In fact, each user has a vector 𝑝𝑢 that represents her in the vector space, so 
using the same procedure as for items it would be possible to derive 𝑝(𝑓|𝑢) directly. 

Additionally, we are currently working in the application of other sources of latent 
analysis techniques. Specifically, we are considering the probabilistic Latent Semantic 
Analysis of (Hofmann, 2004) and Latent Dirichlet Allocation of (Blei, Ng, & Jordan, 
2003). Both have a probabilistic formulation and have been used in RS for building 
powerful recommenders, so we think that they would be suitable for the definition of 
new implicit aspect spaces for diversification. 

5.2.3 Diversification methods 
We would like to extend our adaptation or IR diversity to other algorithms. As an 
inmediate work, we are currently adapting the xQuAD algorithm of Santos, Macdonald, & 
Ounis (WWW, 2010). 
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We are also interested in the revision of some fundamental models that are implicit 
in IR diversification methods such as IA-Select and xQuAD where, parting from a 
generative model, the probability of choice or selection is modeled as a disjoint 
probability over the set of items (in IA-Select 𝑉(𝑑|𝑐, 𝑞) = 𝑝(𝑑|𝑐, 𝑞)) instead of 
considering an alternative based on multiple selection and relevance (such as 
𝑉(𝑑|𝑐, 𝑞) =  𝑝(𝑟𝑒𝑙|𝑑, 𝑐, 𝑞) for IA-Select). We think that this relevance-based 
formulation could provide interesting properties and more flexibility (for example, to 
the tolerance for redundancy) to these algorithms. 

5.2.4 Metrics formalization 
Our unified metric framework proposed a variety of novelty and diversity metrics, 

some of which are based on popularity: EPC, EIP and EFD. Although each metric has a 
different formulation, all of them are based on the same principle of inverse popularity. 
The open question is to determine which of them is better, either based on a theoretic 
basis, an experimental approach or comparing with user feedback. Going further, a 
theoretical or practical discussion of the rank and relevance components (logarithmic vs. 
exponential rank discount, relevance with thresholds or exponentiation, etc.) could be of 
great use. Although we used state-of-the-art proposals, it is not fully clear that the 
combination of them is justified. 

We plan to develop and test the generalization of further diversity metrics as described 
in section 4.6.3. We envision the development of user-specific discovery models, and 
particularizations to further contexts, such as user communities and vertical domains. This 
would allow us, for example, to define a notion of discovery-based distance. In addition to 
the provision of evaluation tools, the underlying models can be used to build objective 
functions for novelty and diversity enhancement methods, taking the ratings predicted by 
baseline recommenders as a proxy of true relevance. 

Finally, we are considering the meta-evaluation of metrics as suggested by Sakai 
(2006) to stablish a quality criterium for metric variants regarding their novelty, rank and 
relevance components. As another objective criterium for the meta-evaluation of metrics, 
online experiments can also provide an additional way for determine the goodness of our 
metric framework. 





 

57 
 

Bibliography 
Adomavicius, G., & Kwon, Y. (to appear). Improving Aggregate Recommendation 

Diversity Using Ranking-Based Techniques. IEEE Transactions on Knowledge 
and Data Engineering. 

Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender 
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE 
Transactions on Knowledge and Data Engineering, 17(6), 734-749. 

Agrawal, R., Gollapudi, S., Halverson, A., & Ieong, S. (2009). Diversifying search 
results. 2nd ACM International Conference on Web Search and Data Mining 
(WSDM'09), (pp. 5-14). Barcelona, Spain. 

Anderson, C. (2006). The Long Tail.Why the Future of Business is Selling Less of More. 
Hyperion Verlag. 

Bellogín, A., Cantador, I., & Castells, P. (2010). A Study of Heterogeneity in 
Recommendations for a Social Music Service. 1st International Workshop on 
Information Heterogeneity and Fusion in Recommender Systems (HetRec'10) at 
the 4th ACM Conference on Recommender Systems (RecSys'10), (pp. 1-10). 
Barcelona, Spain. 

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of 
Machine Learning Research, 3(Jan), 993-1022. 

Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive 
Algorithms for Collaborative Filtering. 14th Conference of Uncertainty in 
Artificial Intelligence (UAI'98), (pp. 43-52). Madison, WI, USA. 

Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for 
reordering documents and producing summaries. 21st International ACM SIGIR 
Conference on Research and Developement in Information Retrieval (SIGIR'08), 
(pp. 335-336). Melbourne, Australia. 

Carterette, B. (2011). An Analysis of NP-Completeness in Novelty and Diversity 
Ranking. Information Retrieval, 14(1), 89-106. 

Carterette, B. (2011). System Effectiveness, User Models, and User Utility: A 
Conceptual Framework for Investigation. 34th International ACM SIGIR 
Conference on Research and Developement in Information Retrielval 
(SIGIR'11), (pp. 903-912). Beijing, China. 

Carterette, B. (2011). System Effectiveness, User Models, and User Utility: A 
Conceptual Framework for Investigation. 34th International ACM SIGIR 
Conference on Research and Developement in Information Retrielval 
(SIGIR'11), (pp. 903-912). Beijing, China. 

Castells, P., Vargas, S., & Wang, J. (2011). Novelty and Diversity Metrics for 
Recommender Systems: Choice, Discovery and Relevance. International 
Workshop on Diversity in Document Retrieval (DDR'11) at the 33rd European 
Conference on Information Retrieval (ECIR'11). Dublin, Ireland. 



58  Bibliography 

 

Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel 
recommendations. 2nd ACM Conference on Recommender Systems (RecSys'08), 
(pp. 179-186). Lausanne, Switzerland. 

Chapelle, O., Metzler, D., Zhang, Y., & Grinspan, P. (2009). Expected Reciprocal Rank 
for Graded Relevance. 18th ACM Conference on Information and Knowledge 
Management (CIKM'09), (pp. 621-630). Singapore. 

Chen, H., & Karger, D. R. (2006). Less is more: probabilistic models for retrieving 
fewer relevant documents. 29th International ACM SIGIR Conference on 
Research and Developement in Information Retrieval (SIGIR'06), (pp. 429-436). 
Seattle, WA, USA. 

Clarke, C., Craswell, N., & Soboroff, I. (2009). Overview of the TREC 2009 Web 
Track. 18th Text Retrieval Conference (TREC 2009). Gaithersburg, MD, USA. 

Clarke, C., Craswell, N., Soboroff, I., & Ashkan, A. (2011). A Comparative Analysis of 
Cascade Measures for Novelty and Diversity. 4th ACM International 
Conference on Web Search and Data Mining (WSDM'11), (pp. 75-84). Honk-
Kong, China. 

Clarke, C., Kolla, M., Cormack, G., Vechtomova, O., Ashkan, A., Büttcher, S., et al. 
(2008). Novelty and Diversity in Information Retrieval Evaluation. 31st 
International ACM SIGIR Conference on Research and Development in 
Information Retrieval (SIGIR'08), (pp. 659-666). Singapore. 

Craswell, N., Zoeter, O., Taylor, M., & Ramsey, B. (2008). An Experimental 
Comparison of Click Position-Bias Models. 1st International Conference on 
Web Search and Web Data Mining (WSDM'08), (pp. 87-94). Palo Alto, CA, 
USA. 

Fleder, D., & Hosanagar, K. (2009). Blockbuster Culture's Next Rise or Fall: The 
Impact of Recommender Systems on Sales Diversity. Management Science, 
697-712. 

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004, January). 
Evaluating Collaborative Filtering Recommender Systems. ACM Transactions 
on Information Systems, 22(1), 5-53. 

Hofmann, T. (2004). Latent Semantic Models for Collaborative Filtering. ACM 
Transactions on Information Systems, 22(1), 89-115. 

Hu, B., Zhang, Y., Chen, W., & Wang, G. Y. (2011). Characterizing Search Intent 
Diversity into Click Models. 20th International Conference on World Wide Web 
(WWW'11), (pp. 17-26). Hyderabad, India. 

Järvelin, K., & Kekäläinen, J. (2002). Cumulated Gain-Based Evaluation of IR 
Techniques. ACM Transactions on Information Systems, 20(4), 422-446. 

Koren, Y., Bell, R., & Volinksy, C. (2009). Matrix Factorization Techniques for 
Recommender Systems. Computer, 30-37. 

Lathia, N., Hailes, S., Capra, L., & Amatriain, X. (2010). Temporal diversity in 
recommender systems. 33rd International ACM SIGIR Conference on Research 
and Development in Information Retrieval (SIGIR'10), (pp. 210-217). Geneva, 
Switzerland. 



5.2. Discussion and Future Work 59 

 
 

McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: how 
accuracy metrics have hurt recommender systems. Conference on Human 
Factors in Computing Systems (CHI'06), (pp. 1097-1101). Montreal, Canada. 

Mei, Q., & Guo, J. (2010). DivRank: the Interplay of Prestige and Diversity in 
Information Networks. 16th ACM SIGKDD International Conference of 
Knowledge Discovery and Data Mining, (pp. 1009-1018). Washington, DC, 
USA. 

Moffat, A., & Zobel, J. (2008). Rank-biased precision for measurement of retrieval 
effectiveness. ACM Transactions on Information Systems, 2:1-2:27. 

Radlinski, F., Kleinberg, R., & Joachims, T. (2008). Learning Diverse Rankings with 
Multi-Armed Bandits. 25th International Conference on Machine Learning 
(ICML'08), (pp. 784-791). Helsinki, Finland. 

Robertson, S. (1977). The Probability Ranking Principle in IR. Journal of 
Documentation, 33, 294-304. 

Robertson, S. (2008). A New Interpretation of Average Precision. 31st International 
ACM SIGIR Conference on Research and Developement in Information 
Retrieval, (pp. 689-690). Singapore. 

Sakai, T. (2006). Evaluating evaluation metrics based on the bootstrap. 29th 
International ACM SIGIR Conference on Research and Development in 
Information Retrieval (SIGIR'06), (pp. 525-532). Seattle, WA, USA. 

Santos, R., Macdonald, C., & Ounis, I. (2010). Exploiting Query Reformulations for 
Web Search Result Diversification. 19th International Conference on World 
Wide Web (WWW'10), (pp. 881-890). Raleigh, NC, USA. 

Santos, R., Macdonald, C., & Ounis, I. (2010). Selectively Diversifying Web Search 
Results. 19th ACM International Conference on Information and Knowledge 
Management (CIKM'10), (pp. 1179-1188). Toronto, Canada. 

Slivkins, A., Radlinski, F., & Gollapudi, S. (2010). Learning optimally diverse rankings 
over large document collections. 27th International Conference on Machine 
Learning (ICML'10), (pp. 983-990). Haifa, Israel. 

Sweeney, S., Crestani, F., & Losada, D. (2008). "Show me more": Incremental Length 
Summarisation Using Novelty Detection. Information Processing & 
Management, 663-686. 

Vargas, S., & Castells, P. (2011). Rank and Relevance in Novelty and Diversity Metrics 
for Recommender Systems. 5th ACM Conference on Recommender Systems 
(Recsys'11), (pp. 109-116). Chigago, IL, USA. 

Vargas, S., Castells, P., & Vallet, D. (2011). Intent-Oriented Diversity in Recommender 
Systems. 34th International ACM SIGIR Conference on Research Developement 
in Information Retrieval (SIGIR'11), (pp. 1211-1212). Beijing, China. 

Vargas, S., Castells, P., & Vallet, D. (2012). On the Suitability of Intent Spaces for IR 
Diversification. International Workshop on Diversity in Document Retrieval 
(DDR'12) at the 5th ACM International Conference on Web Search and Data 
Mining (WSDM'12). Seattle, WA, USA. 

Voorhees, E. M., & Karman, D. K. (2005). TREC Experiment and Evaluation in 
Information Retrieval. MIT Press. 



60  Bibliography 

 

Wang, J. (2009). Mean-Variance Analysis: A New Document Ranking Theory in 
Information Retrieval. 31th European Conference on IR Research on Advances 
in Information Retrieval (ECIR'09), (pp. 4-16). Toulouse, France. 

Wang, J., & Zhu, J. (2009). Portfolio Theory on Information Retrieval. 32nd 
International ACM SIGIR Conference on Research and Development in 
Information Retrieval (SIGIR'09), (pp. 115-122). Boston, MA, USA. 

Yue, Y., & Joachims, T. (2008). Predicting Diverse Subsets Using Structural SVMs. 
25th International Conference on Machine Learning (ICML'08), (pp. 1224-
1231). Helsinki, Finland. 

Zhai, C., Cohen, W., & Lafferty, J. (2003). Beyond independent relevance: methods and 
evaluation metrics for subtopic retrieval. 26th International AMC SIGIR 
Conference on Research and Development in Information Retrieval (SIGIR'03), 
(pp. 10-17). Toronto, Canada. 

Zhang, M., & Hurley, N. (2008). Avoiding monotony: improving the diversity of 
recommendation lists. 2nd ACM Conference on Recommender Systems 
(RecSys'08), (pp. 123-130). Lausanne, Switzerland. 

Zhang, M., & Hurley, N. (2009). Novel Item Recomendation by User Profile 
Partitioning. IEEE/WIC/ACM International Joint Conference on Web 
Intelligence and Intelligent Agent Technologies (WI-AT'09), (pp. 508-515). 
Milan, Italy. 

Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., & Zhang, Y.-C. (2010). 
Solving the apparent diversity-accuracy dilemma of recommender systems. 
Proceedings of the National Academy of Sciences, 4511-4515. 

Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving 
Recommendation Lists Through Topic Diversification. 14th International 
Conference on World Wide Web (WWW'05), (pp. 22-32). Chiba, Japan. 

 


	1. Introduction
	1.1 Motivation
	1.2 Problem definition
	1.2.1 The Recommendation Task
	1.2.2 Overview of Some Collaborative Filtering Algorithms
	1.2.3 Novelty and Diversity in Recommendations

	1.3 Research Goals
	1.4 Publications
	1.5 Document Structure

	2. State of the Art
	2.1 Evaluation Metrics for Information Retrieval
	2.1.1 Metrics Based on User Models
	2.1.1.1 Summary
	2.1.1.2 Browsing models
	2.1.1.3 Utility Accumulation Models

	2.1.2 Objective-Based Metrics

	2.2 Novelty and Diversity in Information Retrieval
	2.2.1 Diversity and Novelty Metrics
	2.2.1.1 Subtopic Retrieval Metrics
	2.2.1.2 Redundancy-Penalization Metrics
	2.2.1.3 Intent-Aware Metrics

	2.2.2 Diversification Methods
	2.2.2.1 Maximal Marginal Relevance
	2.2.2.2 IA-Select
	2.2.2.3 Learning to Rank Approaches
	2.2.2.4 Portfolio Theory
	2.2.2.5 xQuAD
	2.2.2.6 Intent Hypothesis
	2.2.2.7 DivRank


	2.3 Novelty and Diversity in Recommender Systems
	2.3.1 Overview
	2.3.2 Topic Diversification and Intra-list Similarity
	2.3.3 Diversity as a Quadratic Optimization Problem
	2.3.4 Popularity, Long-tail Items and Recommendation Algorithms
	2.3.5 Temporal Diversity
	2.3.6 Aggregate Diversity
	2.3.7 User Profile Partitioning
	2.3.8 Information Theoretical Metrics for Diversity and Novelty


	3. Information Retrieval Diversity for Recommender Systems
	3.1 Introduction
	3.2 Recommendation Diversity vs. Search Diversity
	3.3 The Concept of Aspect Space
	3.4 Adapted Aspect-Based Diversification Algorithms
	3.5 Adapted Diversity Metrics
	3.6 Aspect Space Extraction
	3.6.1 Explicit Aspect Space Extraction
	3.6.2 Implicit Aspect Space Extraction

	3.7 Experiments

	4. A Unified Metric Framework for Recommendation Novelty and Diversity Evaluation
	4.1 Introduction
	4.2 Proposed Framework
	4.3 Item Novelty Models
	4.3.1 Popularity-Based Item Novelty
	4.3.2 Distance-Based Item Novelty

	4.4 Browsing Model
	4.5 Estimation of Ground Models
	4.5.1 Item Discovery
	4.5.2 Item Relevance

	4.6 Recommendation Novelty and Diversity Metrics
	4.6.1 Novelty
	4.6.2 Diversity
	4.6.3 Further Unification

	4.7 An Example
	4.8 Experimental Results
	4.8.1 Pure and Relevance-Aware Metrics
	4.8.2 Rank Sensitiveness

	4.9 Conclusion

	5. Conclusions
	5.1 Summary and Contributions
	5.2 Discussion and Future Work
	5.2.1 Explicit Aspect Spaces Extraction
	5.2.2 Implicit Aspect Spaces Extraction
	5.2.3 Diversification methods
	5.2.4 Metrics formalization


	Bibliography

